Endoparasitic Infection and Antibiotic Resistance Patterns of *Escherichia coli* and *Salmonella* Isolated from Pet Birds in Chattogram

Md. Bayzid

Roll No. 119/02 Registration No. 610 Session: 2019-2020 Semester: January - June

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Parasitology

> Department of Pathology and Parasitology Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > June, 2020

Authorization

I hereby declare that I am the sole author of the thesis. I authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of others institutions or individuals for the purpose of scholarly research.

I the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limit of technology available.

(Md. Bayzid)

Endoparasitic Infection and Antibiotic Resistance Patterns of *Escherichia coli* and *Salmonella* Isolated from Pet Birds in Chattogram

Md. Bayzid

Roll No. 0119/02 Registration No. 610 Session: 2019-2020 Semester: January - June

This is to certify that we have examined this thesis and have found that it is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

(Prof. Dr. Mohammad Alamgir Hossain) Supervisor

(Dr. Md. Abdul Alim) Co-Supervisor

(Prof. Dr. Sharmin Chawdhury) Chairman of the Examination Committee

Department of Pathology and Parasitology Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

June, 2020

Acknowledgements

I wish to acknowledge the immeasurable grace and profound kindness of Almighty "Allah" the supreme authority and supreme ruler of universe, who empowers the author to complete the work successfully.

I feel proud in expressing my deep sense of great gratitude and indebtedness to respected teacher and Supervisor **Prof. Dr. Mohammad Alamgir Hossain**, Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University for his trustworthy and scholastic supervision.

Heartiest gratitude to my Co-supervisor **Dr. Md. Abdul Alim**, Associate Professor, Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University for his coherent and articulated instructions.

I am also grateful to **Prof. Dr. Sharmin Chawdhury**, **Prof. Dr. Md. Masuduzzaman**, **Prof. Dr. AMAM Zonaed Siddiki**, **Prof. Dr. Mohammad Mahbubur Rahman** and all other teachers at DPP, CVASU for their valuable supervision, suggestion and providing important information.

The author humbly thanks to **DR. F. M. Yasir Hasib, DR. Tridip Das, DR. Sirazul Islam, DR. Samun Sarker** for their suggestion, encouragement and support during laboratory work and writing process. I also like to thank all PhD fellow and technical staff of DPP for their encouragement and support during sample collection and laboratory work.

Last but not least, I express my deepest sense of gratitude to my beloved parents and friends for their sacrifice, blessings and encouragement.

The Author June, 2020

Table of contents

Торіс	Page No.
Authorization	II
Acknowledgements	IV
Table of contents	V
List of tables	IX
List of figures	Х
List of abbreviation	XI
Abstract	XII

Topic	Sub Topic	Page
		No.
CHAPTER-1:		1
INTRODUCTION		
CHAPTER-2: REVIEW OF	2.1.1. Epidemiology of gastrointestinal	5
LITERATURE	parasites in birds	
	2.1.2. Some prevalence data of gastrointestinal	7
	parasites in birds	
	2.1.3. Pathology and pathogenesis of	9
	gastrointestinal parasites in birds	
	2.1.4. Identification and diagnosis of	14
	gastrointestinal parasites in birds	
	2.2.1. Blood parasites of birds	18
	2.2.2. Some prevalence data of blood parasites	20
	in birds	
	2.2.3. Transmission of blood parasites in birds	20
	2.2.4. Diagnosis of blood parasites from birds	23
	2.2.5. Public health significance	29
	2.3. E. coli and Salmonella species from faecal	30
	culture of bird and their antibiotic resistance	
	2.3.1. Enterobacteriaceae family	30
	2.3.2. Morphology of E. coli and Salmonella	30
	species	
	2.3.2.1. Strains of <i>E.coli</i>	32
	2.3.2.2. Salmonella genus, species, subspecies,	36
	serotypes	
	2.3.3. Pathogenesis and transmission of <i>E. coli</i>	38
	and Salmonnella species	
	2.3.4. Antimicrobial susceptibility testing	40

Table of contents

	2.3.5. Development and transmission of	41
	antimicrobial resistances	
CHAPTER-3:	3.1. Description of study areas	43
MATERIALS AND		
METHODS		
	3.2. Study period	43
	3.3. Selection of birds and sampling	43
	3.4. Sample collection and preservation	45
	3.5. Experimental study design	47
	3.6. Examination and tests of samples	48
	3.6.1. Fecal samples Examination for	48
	endoparasite detection	
	3.6.2.1. Blood smears examination	49
	3.6.2.2. DNA extraction from blood sample	49
	3.6.2.3. Primer and PCR assay for blood	50
	parasite detection	
	3.6.2.4. Multiplex PCR assay primer details	50
	for blood parasite	
	3.6.3.1. Isolation of <i>E. coli</i> and <i>Salmonella</i>	51
	species	
	3.6.3.2. Antimicrobial susceptibility testing	51
	3.6.3.3. DNA extraction from <i>E coli</i> and	53
	Salmonella species	
	3.6.3.4. Primers and PCR assay	54
	3.7. Visualization of PCR product	56
	3.8. Statistical analysis	57
CHAPTER-4: RESULTS	4.1. Occurrence of gastrointestinal parasites in	58
	pet birds	
	4.2. Occurrence of blood parasites in pet bird's	64
	species	

	4.3.1. Isolation of <i>E. coli</i>	67
	4.3.2. Antimicrobial resistance of <i>E. coli</i>	68
	4.3.3. Antibiotic resistance pattern for <i>E. coli</i>	68
	4.3.4. Antimicrobial resistance genes from E.	70
	coli	
	4.4.1. Isolation of <i>Salmonella</i> species	73
	4.4.2. Antimicrobial resistance of Salmonella	74
	species	
	4.4.3. Antibiotic resistance pattern for	75
	Salmonella species	
	4.4.4. Antimicrobial resistance genes for	76
	Salmonella species	
CHAPTER-5:	5.1. Gastrointestinal parasites of birds	77
DISCUSSION	5.2. Blood parasites of birds	81
	5.3. E. coli and Salmonella species and their	82
	antibiotic resistance	
CHAPTER-6:		87
CONCLUSION		
CHAPTER-7:		89
RECOMMENDATION		
AND FUTURE		
PERSPECTIVE		
REFERENCES		90
Appendix A		117
BRIEF BIOGRAPHY		118

List of tables

Table No.	Торіс	Page
		No.
Table: 1	Pathotypes of E. coli with their virulence factors	35
Table: 2	Salmonella species, subspecies, serotypes and their usual habitats	38
Table: 3	Sample collection from birds	44
Table: 4	Cycling conditions used during PCR for detection of blood	50
	parasite detection	
Table: 5	Primer sequence for blood parasites detection	50
Table: 6	Zone of inhibition and their corresponding interpretation	53
Table: 7	Primer details and annealing temperature for antibiotic resistance	54
	gene determination	
Table: 8	Contents of each reaction mixture of PCR used to detect different	55
	gene	
Table: 9	Coproscopy and endoparasite detection result chart	60
Table: 10	Blood parasites result chart	65
Table: 11	Occurrence of <i>E. coli</i> infection in pet birds	67
Table: 12	Antibiotic susceptibility testing of <i>E. coli</i> isolates	68
Table: 13	Antibiotic Resistance Pattern for E. coli	69
Table: 14	Occurrence of antibiotic resistance genes in E. coli	73
Table: 15	Occurrence of Salmonella spp. infection in pet birds	74
Table: 16	Antibiotic susceptibility testing of Salmonella isolates	74
Table: 17	Antibiotic resistance pattern for Salmonella spp.	75
Table: 18	Occurrence of antibiotic resistance genes in Salmonella spp.	76

List of fig	ures
-------------	------

Figure No.	Торіс	Page No.
Figure: 1	Eimeria sporulated oocyst	15
Figure: 2	Isospora sporulated oocyst	15
Figure: 3	Caryospora sporulated oocyst	15
Figure: 4	Haemoproteus spp.	25
Figure: 5	Plasmodium spp.	27
Figure: 6	Leucocytozoon spp.	29
Figure: 7	Venn diagram illustrating the relationships between E.coli	33
	pathotypes causing diarrhoeal disease	
Figure: 8	Area for sample collection	43
Figure: 9	Sample collection from different household and pet shop	46
Figure: 10	Restraining and blood collection from finch bird	46
Figure: 11	Experimental design of the study	47
Figure: 12	Different types of egg of gastrointestinal parasite	48
Figure: 13	Bacteria culture and sensitivity to antibiotic	52
Figure: 14	Loading PCR product in 1.5% agarose gel	56
Figure: 15	PCR image of Haemoproteus, Plasmodium and Leucocytozoon	64
Figure: 16	PCR image of gyrA of E.coli	70
Figure: 17	PCR image of gyrB of E.coli	70
Figure: 18	PCR image of <i>parC</i> of <i>E.coli</i>	70
Figure: 19	PCR image of <i>tetA</i> of <i>E.coli</i>	71
Figure: 20	PCR image of <i>tetB</i> of <i>E.coli</i>	71
Figure: 21	PCR image of CTX-M-2 of E.coli	71
Figure: 22	PCR image of <i>bla_{TEM}</i> of <i>E.coli</i>	72
Figure: 23	PCR image of <i>sul1</i> of <i>E.coli</i>	72
Figure: 24	PCR image of <i>sul2</i> of <i>E.coli</i>	72

List of Abbreviations

Abbreviations	Elaborations
AML	Amoxicillin
AMR	Antimicrobial Resistance
AST	Antibiotic Sensitivity Test
AZM	Azithromycin
CI	Confidence interval
CIP	Ciprofloxacin
CLSI	Clinical and laboratory standards institute
CN	Gentamicin
CRO	Ceftriaxone
CVASU	Chattogram Veterinary and Animal Sciences University
DNA	Deoxyribo Nucleic Acid
DPP	Department of Pathology and Parasitology
e.g.	Example
etc.	Et cetera
GI	Gastrointestinal
GIT	Gastrointestinal tract
gm	Gram
Ι	Intermediate resistant
ID	Identification
MAR	Multiple Antibiotic Resistance
MDR	Multi Drug Resistance
min	Minute
ОТ	Tetracycline
P value	Prevalence value
PCR	Polymerase Chain reaction
R	Resistant
RCF	Relative centrifugal force
RPM/ rpm	Revolution per minute
S	Sensitive
Sec.	Second
spp.	Species
SXT	Trimethoprim-sulfomathoxazole
WHO	World Health Organization
%	Percent
μm	Micrometer

Abstract

Different parasitic and bacterial diseases are the crucial impediment in the rearing of pet birds. Gastrointestinal tract and blood are the major predilection sites for parasitic infection. The aim of this study was to identify the gastrointestinal (GI), as well as blood parasitic infection and the occurrence of *Escherichia coli* and *Salmonella* spp. with antimicrobial resistance (AMR) patterns from pet birds in Bangladesh. Between June, 2019 and March, 2020 a total of 549 (for GI parasite), 150 (for AMR of E. coli and Salmonella spp.) freshly voided faecal samples and 311 blood samples were collected from Chattogram metropolitan area, Bangladesh. For the detection of GI parasites coproscopy were performed and for isolation of E. coli and Salmonella spp. different microbiological tests were conducted followed by antibiotic sensitivity test (AST) and antibiotic resistant genes were identified by molecular technique. Blood samples tested through multiplex PCR method for *Haemoproteus*, *Plasmodium* and *Leucocytozoon* spp. detection. The occurrence of GI parasite was 18.9% (CI=15.7-22.5%). Among them the protozoal cyst was 10.9% (CI=8.40–13.8%) containing *Eimeria* 7.7% (CI=5.6-10.2%), Isospora 2.9% (CI=1.7-4.7%), Caryospora 0.4% (CI=0-1.3%). Among nematode, Ascaridia infection rate was 3.5% (CI=2.1-5.4%), Capillaria 1.7% (CI=1-3%), Heterakis 0.91% (CI=0-2%). Within cestode, the *Coanotaenia* was found 0.36% (CI=0-1%). But no trematode egg was detected. The occurrence of blood parasitic disease was 2.25% (CI=0.91-4.58%). Among them 0.32% (CI=0.4-1.8%) was Haemoproteus, 1.3% (CI=0.35-3.26%) Plasmodium and 0.64% (CI=0.4-2.3%) Leucocytozoon. The overall prevalence of E. coli in pet birds was 48.7% (95% CI=40.4-57). The AST revealed that, the 91.78% isolates were resistant to ceftriaxone, 86.3% to tetracycline and 75.34% to sulfomethoxazole-trimethoprim. To the contrary, 98.63% isolates were sensitive to colistin sulfate followed by 97.26% to gentamicin. Majority of E. coli isolates were multidrug resistant and carried blaTEM, tetA, tetB, sul1, sul2, gyrA, gyrB, parC and CTX-M-2 genes. The overall infection rate of Salmonella spp. in pet birds were 2.7 % (95% CI=0.7-6.7). The AST evolved that the isolates were 100% resistant to ceftriaxone, 75% to azithromycin, 50% to amoxiciline and tetracycline followed by gentamicin 25%. To the contrary, 100% isolates were sensitive to ciprofloxacin, enrofloxacin and colistin sulfate. Different pet bird's spp. was infected with various types of gastrointestinal and blood parasites. Due to cherished in intensive care with regular anthelmintic therapy, less vector availability, the occurrence of gastrointestinal as well as blood parasitic infections were less. In order to haphazard used of antibiotics, AMR were developed in E. coli and *Salmonella* spp.

Keywords: Antibiotic resistance, blood parasite, coproscopy, *E. coli*, gastrointestinal parasite, pet birds, *Salmonella* spp.