

COMPARATIVE ANALYSIS OF SEAWEEDS, REARED WITH OYSTERS IN CAPTIVE ENVIRONMENT

Roll No.: 0123/05 Registration No.: 1285 Session: 2023-2024

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Aquaculture

> Department of Aquaculture Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **JUNE 2024**

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Sadia Afrin June 2024

COMPARATIVE ANALYSIS OF SEAWEEDS, REARED WITH OYSTERS IN CAPTIVE ENVIRONMENT

Sadia Afrin

Roll No.: 0123/05 Registration No.: 1285 Session: 2023-2024

This is to certify that we have examined the above Master's thesis, and have found that it is complete, and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

> (Dr. Helena Khatoon) Supervisor

(Dr. Yeasmin Nahar Jolly) Co-supervisor

(Joyshri Sarker) Chairman of the Examination Committee

Department of Aquaculture Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh

JUNE, 2024

Acknowledgements

First and foremost, all the praises are for the almighty, **Allah** who bestowed me with the ability and strength to accomplish this MS research work along with the thesis on due time.

I would like to convey my heartfelt love, and earnest gratitude to my parents who brought me in the light of earth and nursed me with all the facility that I need to be succeeded in life.

I sincerely express my intense gratitude to my MS supervisor **Dr. Helena Khatoon** (Associate Professor, Dept. of Aquaculture, CVASU), to my co-supervisor **Dr. Yeasmin Nahar Jolly** (Chief Scientific officer, Atmospheric and Environmental Chemistry Lab, Bangladesh Atomic Energy Commission) and to **Tashrif Mahmud Minhaz** (Lecturer, Dept. of Aquaculture, CVASU) for their close supervision, immense support, and intellectual guidance during my whole research work.

I would like to express heartfelt gratitude, and deepest regards to Prof. Dr. Mohammed Nurul Absar Khan, (Director, Coastal Biodiversity, Marine Fisheries, and Wildlife Research Centre) for offering me the opportunity to execute my research in the research facility of Coastal Biodiversity, Marine Fisheries, and Wildlife Research Centre, Cox's Bazar.

I would like to have the opportunity to especially thank National Science and Technology (NST) fellowship provider for offering me NST fellowship for this project.

My appreciation, and gratitude is extended to UGC, Bangladesh for additional funding required to accomplish my research work.

I would like to especially thank Chattogram Veterinary and Animal Sciences University for granting me the laboratory facilities required for the research work, and also for providing me accommodation facilities at CVASU outreach campus at Cox's Bazar.

At the end, I would like to convey my sincere gratitude to Mohammad Ekramul Haque, Mahima Ranjan Achaejee, Suveda Newaz, Sifatun Nur, Trina Das and all other persons who directly supported me during field and lab work of my research program.

Sadia Afrin June, 2024

Table of contents

Contents	Page No.
Title Page	Ι
Authorization	II
Signature Page	III
Acknowledgement	IV - V
List of Abbreviations	IX
List of Figures	Х
List of Tables	XI
Abstract	XII
Chapter-1: Introduction	1 – 5
Chapter-2: Review of Literature	6 – 11
2.1. Indoor seaweed farming	6 – 7
2.2. Indoor oyster farming	7 - 8
2.3. Nutritional profile of seaweed and oyster	8-9
2.4. Biochemical indices of seaweed and oyster	9 – 11
Chapter-3: Materials and Methods	12 – 19
3.1. Experimental design and setup	12
3.2. Routine maintenance	12
3.3. Determination of water quality parameters	12 – 15
3.3.1. Determination of total ammonia nitrogen (TAN)	13 - 14
3.3.2. Determination of nitrite-nitrogen (NO2-N)	14
3.3.3. Determination of soluble reactive phosphorous (SRP)	14 – 15
3.4. Growth parameters and survival	15
3.5. Proximate and biochemical analysis	15 - 19
3.5.1. Proximate analysis	16
3.5.2. Pigments	16 - 18
3.5.2.1. Estimation of chlorophyll	17
3.5.2.2. Estimation of carotenoid	17
3.5.2.3. Estimation of fucoxanthin	17 – 18
3.5.3. Fatty acids	18
3.5.4. Amino acids	18 – 19

3.6. Statistical analysis	19
Chapter-4: Results	20-32
4.1. Water quality variables and their relationship	20 - 21
4.2. Growth parameters	22 - 24
4.2.1. Growth of seaweeds	22
4.2.2. Survival and growth of oyster	23 - 24
4.3. Proximate composition of seaweeds and oyster	25 – 26
4.4. Biochemical indices of seaweeds and oyster	27 - 32
4.4.1. Pigments of seaweeds	27
4.4.2. Fatty acids	27 - 30
4.4.3. Amino acids	30 - 32
Chapter-5: Discussion	33 - 41
5.1. Water quality variables and their relationship	33 - 34
5.2. Survival and growth performance	35
5.2.1. Growth rate of seaweeds	35
5.2.2. Survival and growth rate of oyster	35
5.3. Proximate composition	36 - 37
5.3.1. Proximate composition of seaweeds	36
5.3.2. Proximate composition of oyster	37
5.4. Biochemical indices	37 – 41
5.4.1. Pigments of seaweeds	37
5.4.2. Fatty acids	37 - 40
5.4.2.1. Fatty acids of seaweeds	37 – 38
5.4.2.2. Fatty acids of oyster	38 - 40
5.4.3. Amino acids	40 - 41
5.4.3.1. Amino acids of seaweeds	40 - 41
5.4.3.2. Amino acids of oyster	41
Chapter-6: Conclusions	42
Chapter-7: Future Prospects and Recommendations	43 – 44
References	45 – 56
Appendices	57 - 63
Appendix A: Principal Component Analysis of the water quality variables measured in every three alternate days.	57

VII

Brief Biography of the Author	64
Appendix I: Analysis of variance examining the effect of indoor and outdoor culture condition on amino acids in seaweeds and oyster.	62 - 63
Appendix H: Analysis of variance examining the effect of indoor and outdoor samples on the fatty acid groups and fatty acid ratios in seaweeds and oyster.	61 - 62
Appendix G: Analysis of variance examining the effect of indoor and outdoor samples on the fatty acid contents of seaweeds and oysters.	59 - 61
Appendix F: Analysis of variance examining the effect of indoor and outdoor samples on the pigments of seaweeds and oyster.	59
Appendix E: Analysis of variance examining the effect of different indoor and outdoor samples on the proximate composition of seaweeds and oyster.	58
Appendix D: Analysis of variance examining the effect of different treatments on live weight gain, specific growth rate, and survival of oysters.	58
Appendix C: Analysis of variance examining the effect of different treatments on live weight gain and specific growth rate of seaweeds.	57
Appendix B: Principal Component Analysis of the water quality variables measured in bi-weekly.	57

Acronym	Definition
AA	Amino Acids
ANOVA	Analysis of Variance
AOAC	Association of Official Analytical Chemists
DHA	Docosahexaenoic Acid
DO	Dissolved Oxygen
EAA	Essential Amino Acids
EPA	Eicosapentanoic Acid
FAME	Fatty Acid Methyl Esters
GCMS	Gas Chromatography and Mass Spectrophotometry
GI	Gracilaria verrucosa (Indoor)
GO	G. verrucosa (Outdoor)
MUFA	Mono Unsaturated Fatty Acids
NEAA	Non-essential Amino Acids
OI	Oyster (Indoor)
00	Oyster (Outdoor)
ORP	Oxidation Reduction Potential
PCA	Principal Component Analysis
PUFA	Poly Unsaturated Fatty Acids
SAFA	Saturated Fatty Acids
SRP	Soluble Reactive Phosphorus
TAN	Total Ammonia Nitrogen
TFA	Total Fatty Acids
TSS	Total Suspended Solids
TUFA	Total Unsaturated Fatty Acids
UI	Ulva lactuca (Indoor)
UO	U. lactuca (Outdoor)

List of Abbreviations

List e	of Figures
--------	------------

SI No.	Description	Page No.
1	Design of experimental unit and pattern of their setup.	13
2	A- Correlations among water quality parameters recorded in	21
	every three alternate days, B- Correlations among water	
	quality parameters recorded in bi-weekly.	
3	Box and whisker plot of Live weight gain and specific growth	22
	rate of different seaweeds.	
4	A- Box and whisker plot of live weight gain, specific growth	24
	rate and survival rate of oyster across the treatments, B-	
	distribution of length, width and thickness of oyster across the	
	treatments during culture period.	
5	A- proximate composition of seaweed samples, B- proximate	26
	composition of oyster samples.	
6	Box and whisker plot of pigments available in seaweeds from	27
	indoor and outdoor samples.	
7	A- Fatty acid content (% of total fatty acids) of seaweeds in	29
	groups, B- Fatty acid ratios of seaweeds, from indoor and	
	outdoor samples.	
8	Fatty acid content (% of total fatty acids) of oyster in groups	30
	from indoor and outdoor samples.	
9	Circular staked barplot of amino acids in seaweeds and	31
	oysters from indoor and outdoor samples.	
10	A- principal component analysis of water quality parameters	34
	recorded in every three alternate days, B- principal	
	component analysis of water quality parameters recorded in	
	bi-weekly.	

List of Tables

SI No.	Description	Page No.
1	Fatty acid content of seaweeds and oysters (% of total fatty	28
	acids) from the indoor and outdoor samples.	
2	Fatty acid ratios of oysters from the indoor and outdoor	30
	samples.	

Abstract

Two seaweed species, Gracilaria verrucosa and Ulva lactuca, as well as oysters, Crassostrea belcheri, were co-cultured under different treatments for 120 days in captivity. The study assessed the water quality parameters, growth performance, and proximate and biochemical composition of the organisms. G. verrucosa and C. belcheri were co-cultured (T1), U. lactuca and C. belcheri co-cultured (T2), and G. verrucosa, U. lactuca, and C. belcheri were cultured independently (C1, C2, C3), with three replications in each case. The experiment's conclusion involved a comparison of the treatments and control group's oyster growth, survival, and water quality. Apart from that, both indoor and outdoor seaweeds and oysters were compared to assess their proximate and biochemical indices. The salinity ranged from 32.75 to 22.05 psu, the dissolved oxygen from 7.19 to 4.22 ppm, and the pH from 8.72 to 6.45 ppm for each treatment. Significant relationships between salinity, conductivity, and temperature were found using principal component analysis. Significant variations were seen in the growth rates of the two seaweeds, U. lactuca exhibiting the highest live weight gain and specific growth rate in T2. The percentage of surviving oysters varied from 60% to 80%, with T2 showing the fastest growth rates. The seaweeds' moisture, ash, protein, carbohydrate, and fiber contents varied significantly, according to proximate composition analysis, with U. lactuca (indoor) having the highest protein and carbohydrate content (p < 0.05). Biochemical indices indicates that indoor U. lactuca contained the maximum total chlorophyll, carotenoids, and fucoxanthin. Significant variations were found in the fatty acid analysis of the seaweed and oyster samples. The results showed that the outdoor ovster samples had more omega-3 fatty acids (p < 0.05) while the indoor seaweed samples had lower saturated fatty acids and higher polyunsaturated fatty acids. U. lactuca grown indoors exhibited the highest quantities of both essential and nonessential amino acids (NEAA). However, oyster samples did not significantly differ in their EAA content when grown indoors or outdoors, they did exhibit higher levels of NEAA in outdoors. The study emphasizes how culture circumstances affect the nutritional and biochemical profiles of seaweeds and oysters, and it offers indoor coculture as a workable substitute for bad environmental conditions that yet allow for optimal growth and nutritional quality.

Keywords: *Gracilaria verrucosa*, *Ulva lactuca*, *Crassostrea belcheri*, co-culture, biochemical composition