

Quantification of anti-SARS-CoV-2 antibody after 2nd and 3rd Dose of Vaccination among Health Care Worker

Name: Dr. Israt Sahrin Arafat

Roll no.: 0121/04 Registration no.: 1008 Session: 2021-2022

A thesis submitted in the partial fulfillment of the requirements for the degree of MPH (Public Health)

One Health Institute

Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram-4225

March, 2023

Authorization

I, Dr. Israt Sahrin Arafat, hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Dr. Israt Sahrin Arafat March 2023.

Quantification of anti-SARS-CoV-2 antibody after 2nd and 3rd Dose of Vaccination among Health Care Worker

Name: Dr. Israt Sahrin Arafat

Roll no.: 0121/04 Registration no.: 1008 Session: 2021-2022

This is to certify that we have examined the above MPH (Public Health) thesis and have found that it is complete and satisfactory in all respects, and that all required by the thesis examination committee have been made.

Prof. Dr. Sharmin Chowdhury, PhD Director One Health Institute Supervisor -----

Dr. Towhida Kamal Assistant Professor, Department of Pathology & Parasitology Co- Supervisor

Prof. Dr. Sharmin Chowdhury, PhD Chairman of the Examination Committee One Health Institute CHATTOGRAM VETERINARY AND ANIMAL SCIENCES UNIVERSITY, KHULSHI, CHATTOGRAM-4225 MARCH 2023

Acknowledgements

All praises to almight the Allah, who gave me the opportunity to be enrolled in the **One Health Institute** for achieving Master in Public Health.

The author wishes heartfelt gratitude to her honorable supervisor **Prof. Dr. Sharmin Chowdhury,** Professor, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU) for her coherent and articulated instructions. It would not be possible to complete such a laborious task without her scholastic guidelines. It was an exquisite experience for me to work under her supervision. The author feels much pleasure to convey her gratitude to **Dr. Towhida Kamal**, co-supervisor for her valuable suggestions. Special thanks to him for his encouragement and cordial cooperation throughout the work.

The author humbly thanks Dr. Jahan Ara, for her continuous suggestions and guidance. Its author's immense pleasure to thank Zarin Tasnim Mim, Dr. Subrata Chakraborty, Dr. Nahid Uddin, Md. Shamim Hossen for their continuous guidance and support to extend the spectrum of her thesis.

The author would like to acknowledge the support and encouragement received during the MPH program from other teachers, technical and non-technical staff of the One Health Institute, CVASU.

Finally, the author expresses her thankfulness to her family members, seniors, juniors and well- wishers for their allowance and heartiest support.

Acknowledgements	iv
Table of contents	V
List of Tables	ix
List of Figures	Х
List of Abbreviations	xi
Abstract	xii
Chapter 1 Introduction	1
Chapter 2 Review of the Literature	6
2.1 COVID -19 pandemic and its causative agent	6
2.2 SARS-CoV-2 Structure	6
2.3 Pathogenesis and host response	7
2.4 Immunopathogenesis of SARS-CoV-2	10
2.5 Variants of SARS-CoV-2	11
2.6 Transmission Of SARS-CoV-2	12
2.7 Symptoms and sign of COVID-19	13
2.8 diagnosis of COVID-19	16
2.9. Seroprevalence of SARS-CoV-2 worldwide	17
2.10 Seroprevalence of SARS-CoV-2 among HCWS	20
2.11 The Bangladesh context of the disease	23
2.12 Seroprevalence in Bangladesh	24
2.13 Vaccine status and strategy	27
Chapter 3 Materials and Methods	30
3.1 Study design	30
3.2 Place of study	30
3.3 Period of study	30

Table of contents

3.4 Study population	31
3.5 Sampling technique	31
3.6 Sample size determination	31
3.7 Selection criteria	32
3.7.1 Inclusion criteria	32
3.7.2 Exclusion criteria	32
3.8 Variables	32
3.9 Data collection instrument	33
3.10 Baseline blood collection and processing	33
3.11 Serological test examination	33
3.11.1 Material and component	33
3.11.2 Specimen preparation	35
3.11.3 Test procedure	35
3.11.4 Measuring the Absorbance	36
3.11.5 Calculation: record the absorbance from the microplate reader	38
3.11.6 Immunochromatography (ICT)	38
3.11.7 Material	38
3.11.8 Procedure	39
3.11.9 Interpretation	39
3.12 Data management	40
3.13 Statistical data analysis	40
3.14 Ethical aspect	41
Chapter 4 Result	42
4.1 Characteristics of study participants	42
4.2 Prevalence of antibody (IgG/IgM)	45

4.3 Concentration of antibody (DU/ml)	49
4.4 Agreement between ELISA and ICT	53
Chapter 5 Discussion	54
Chapter 6 Conclusion	61
Chapter 7 Limitations	62
Chapter 8 Recommendations	63
Chapter 9 Appendix Questionnaire Survey	64
Chapter 10 References	66
Chapter 11 Biography	77

List of Tables

Table 1	Demographic data of study participants	43
Table 2	Univariable analysis (X2 test, logistic regression) to evaluate the association of different variables with seroprevalence of anti-SARS-Cov-2 antibodies tested with ICT	47
Table 3	Univariable analysis (t-test, one-way Anova) to evaluate the mean difference of quality of anti-SARS-Cov2 antibodies in serum sample	52
Table 4	Agreement between ELISA and ICT	53

List of Figures

Figure 2.1.	Genomic sequence of SARS-CoV-2.ORF-Open Reading	7
	Frame. UTR-Untranslated region, S-Spike protein, M-	
	Membrane protein, E-envelope protein, N-Nucleocapsid	
	protein (Satarker and Namphoothiri, 2020)	
Figure 2.2	Pathogenesis of Covid-19 (Harrison et al., 2020)	9
Figure 2.3	Immunopathogenesis Against COVID-19 (Chatterjeeet et al.,	10
	2020))	
Figure 2.4	Mode of spread of COVID-19 (CDC)	12
Figure 2.5	Proposed Severe Acute Respiratory Syndrome Coronavirus 2	13
	(SARS-CoV-2) Transmission Routes (Harrison et al., 2020)	
Figure 2.6	CoronaVirus Infectious Disease 2019 Clinical Symptoms	14
	(COVID-19 (Harrison AG, 2020)	
Figure 3.1	Geographical Location of the sites of different kinds of	30
	samples collected for the study	
Figure 3.2	Kit contains reagent	34
Figure 3.3	Reading the absorbance of each well in microplate and reading	37
	the absorbance of each well in microplate	
Figure 3.3(a)	Reading the absorbance of each well in microplate	37
Figure 3.3(b)	Reading the absorbance of each well in microplate	38
Figure 3.4	Materials for ICT	39
Figure 3.5	Reading of presence or absence of (IgG/M) in lancet	40
Figure 4.1	Prevalence of presence of antibody	46
Figure 4.2	Prevalence of IgG in different donor types along with	46
	receiving different doses of vaccine.	
Figure 4.3	Mean concentration of antibody (DU/ml) among different age	50
	groups that received vaccine	
Figure 4.4	Mean concentration of antibody (DU/ml) among population	50

List of Abbreviations

HCW	Health Care Worker
RT-PCR	Real Time Polymerase Chain Reaction
ARDS	Acute Respiratory Distress Syndrome
СМР	Chittagong metropolitan
CVASU	Chattogram Veterinary and Animal Sciences University
SARS-CoV-2	severe acute respiratory syndrome coronavirus 2
ICTV	International Committee on Taxonomy of Viruses
PHEIC	Public health emergency of international concern
ELISA	Enzyme linked immunosorbent assay
ICT	Immunochromatographic test
GMC	Geometric mean concentration
WHO	World health Organization
NSP	Non-structural protein
ORF	Open reading frame
GMT	Geometric mean titer
ICT	Immunochromatography
CDC	Centre for disease control
CPL	Clinical pathology laboratory
RAD	Rapid antigen detection
IgG	Immunoglobulin G
IgM	Immunoglobulin M
ASAb	Anti-spike antibody
Nab	Neutralizing antibody
IPC	Infection Prevention Control

ABSTRACT

Introduction: The decision of quick vaccination against covid-19 has possibly minimized the SARS-CoV-2 transmission globally. This effective strategy expedites the development of the immune system among the susceptible. However, frontline healthcare workers (HCWs) are supposed to be more susceptible to infection due to working closely with the patients. It is relatively unknown about the durability of their immune response to covid-19 after receiving a set of covid-19 vaccine doses. Seroprevalence studies that quantify the serum level of e.g. Immunoglobulin G(IgG) and/or Immunoglobulin M (IgM) can be effective in this regard. Therefore, this thesis intended to estimate the prevalence of antibodies and quantify the titer and its durability among vaccinated HCWs.

Methods and Materials: Blood samples e.g. heparinized blood specimens (6mL) were collected from 530 healthcare workers from different government and non-government hospitals in Chattagram Metropolitan Area to attain the objectives. The clinical test was performed at the clinical pathology laboratory (CPL) of Chattogram Veterinary and Animal Sciences University (CVASU) within three hours of sample collection. Qualitative ELISA test was executed to determine the presence of antibody (IgG) in the serum sample, and its level was quantified following the method SARS-CoV-2 S1-RBD IgG (DiaSino® Laboratories Co., Ltd. Zhengzhou, China, Ref: DS207704). An Immunochromatographic (ICT) test was also executed to compare with ELISA test results. Association of different variables with the prevalence and titer of antibody was statistically evaluated using STATA-11.

Results: antibodies were detected in 99.62% of the study population using the qualitative ELISA test, and 61.13% in ICT test. It was revealed that the prevalence of antibodies increased with the increased number of vaccine doses (p=0.05). Similarly, a statistically significant increase in the titer of antibodies with receiving the higher dose of Covid-19 vaccine was observed in a quantitative ELISA test (p<0.001). Enough antibody titer upto 8 months and onwards after receiving the second dose was found in 71.50 % population. Moreover, the findings revealed that prevalence of antibody development is 1.7 times higher in the symptomatic infected population compared to asymptomatic infected population (OR: 1.7; CI:0.971-3.082; p<0.05). However, a significant association between

antibody titer development with different potential variables e.g. gender, comorbidities and immunosuppressant were not observed.

Conclusion: this thesis emphasizes the role of vaccines in antibody production against SARS-CoV-2 and a robust antibody durability after 2nd dose of vaccination. Therefore, the findings of this thesis would help policy makers to develop a new vaccination strategy regarding the booster dose.

Key words: Seroprevalence, anti SARS-Cov-2 antibody, mean titer; IgG/Ig.