

EFFECTS OF PHYTASE SUPER DOSING ON PERFORMANCE, PLASMA MINERAL CONTENTS AND BONE MINERALIZATION IN BROILER CHICKEN

Sajjad Hossain

Roll No: 0118/03 Registration No: 498 Session: 2018-2019

A thesis submitted for the partial fulfillment of the requirements for the degree of Master of Science in Poultry Science

> Department of Dairy and Poultry Science Faculty of Veterinary Science

Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

March, 2021

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available

Sajjad Hossain

EFFECTS OF PHYTASE SUPER DOSING ON PERFORMANCE, PLASMA MINERAL CONTENTS AND BONE MINERALIZATION IN BROILER CHICKEN

Sajjad Hossain

Roll No: 0118/03 Registration No: 498 Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made.

> Dr. Marjina Akter Associate Professor **Supervisor** Department of Dairy and Poultry Science, CVASU

Dr. Mohammad Abul Hossain Professor and Head Chairman of the Examination Committee

Department of Dairy and Poultry Science Faculty of Veterinary Medicine

Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh

MARCH 2021

ACKNOWLEDGEMENTS

First of all, I shall give all the commendation to our Most Gracious, Most Merciful, Most Benign **''Almighty ALLAH**'' Who has provided me the courage, talent, strength and enough time to complete this research work.

I express my gratitude and indebtedness to Honorable Vice-Chancellor, *Professor Dr. Goutam Buddha Das* and respected Dean, *Professor Dr. Mohammad Alamgir Hossain*, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, from the bottom of my heart for their immense administrative support to complete my research work.

My deepest sense of gratitude and sincere appreciation goes to my honorable teacher and my research supervisor, Associate Professor "*Dr. Marjina Akter*", Department of Dairy and Poultry Science, CVASU, Chattogram, for her unfailing support, authoritative guidance, constructive criticism, advice and continuous motivation. It would never have been possible for me to take this work to completion without her incredible support and continuous encouragement.

My deepest thanks and sincere gratitude goes to "*Dr. Mohammad Abul Hossain*" Head and Professor, Department of Dairy and Poultry Science, CVASU, Chattogram, for his valuable guidance, constant supervision, intellectual suggestions, knowledge, patience, and time to teach me to be more confident person that I am going to use in work world.

I would like to express my sincere gratitude to *Prof. Dr. A.K.M. Humayun Kober*, *Prof. G.K. Debnath, Prof. Akhtar-Uz-Zaman, Asst. Prof. Dr. Nasima Akter* for their valuable advice, support, suggestion. I would like to thanks all the staffs of this department. Without their help, the work would not be done.

I also express thanks to laboratory technician and also cordial thanks to all the staff members of the Animal Nutrition laboratory and Biochemistry laboratory, CVASU, Chattogram,for their cooperation during laboratory analysis.

I would like to express my heartfelt gratitude thankfully to my beloved parents and family members for their love, blessings, care, dedicated efforts, valuable prayers, continuous support, endurance and dedication during my academic life.

The Author

CONTENTS

CHAPTER	TITLE	PAGE
		NO.
	AUTHORIZATION	ii
	ACKNOWLEDGEMENTS	iv
	LIST OF TABLES	viii
	LIST OF FIGURES	ix
	LIST OF ABBREVIATIONS	x-xi
	ABSTRACT	xii
1	INTRODUCTION	1-2
2	REVIEW OF LITERATURE	3-6
2.1	Phytate	3
2.2	Phytase	3
2.3	Response of broiler chicken to super dosing of phytase	4
2.3.1	Growth performance	4-5
2.3.2	Bone development and Mineralization (Bone calcium and phosphorus)	5
2.3.3	Carcass quality and visceral organ development	5
2.3.4	Effect on blood mineral contents	6
2.3.5	Profitability due to phytase supplementation	6
2.3.6	Justification of the present study	6

CHAPTER	TITLE	PAGE
		NO.
3	MATERIALS AND METHODS	7-13
3.1	Experimental design and collection of day-old broiler chicks	7
3.2	Formulation of experimental diets	8-9
3.3	Management of birds	10-11
3.4	Formulation of test diets	9-11
3.5	Sample collection	11-12
3.6	Sample processing and chemical analysis	12
3.7	Cost benefit analysis	12
3.8	Statistical analysis	13
4	RESULT	16-20
4.1	Gross responses	16
4.2	Tibia bone development	16-17
4.3	Serum biochemistry	17-18
4.4	Carcass yield parameters	18
4.5	Visceral Organs development	18-19
4.6	Cost Benefit analysis	19-20
5	DISCUSSION	21-23
5.1	Gross responses	21
5.2	Tibia bone development	21-22
5.3	Serum biochemistry	22

5.4	Carcass yield parameters	22
5.5	Visceral Organs development	23
5.6	Cost Benefit analysis	23
6	CONCLUSIONS	24
7	LIMITATION AND RECOMMENDATION	24
	REFERENCES	25-33
	APPENDICES	34-38
	BRIEF BIOGRAPHY	39

_

TABLE	TITLE	PAGE
NO.		NO.
1	Layout of the experiment	07
2	Nutrient composition of ready-made starter diet (Nahar TM)	08
3	Composition of finisher diet for broiler chickens (13 -28 days)	09
4	Calculated and analyzed value of the nutrient components (%) of finisher diet	10
5	Vaccination schedule	11
6	Effect of different level of phytase on growth performance	16
	(d 13-28)	
7	Effect of dietary phytase level on tibia bone quality of birds at d 28	17
8	Effect of different level of phytase on blood parameters of broiler chicken (d 13 to 28)	17
9	Effect of different level of phytase on carcass characteristics of birds (d 13 to 28)	18
10	Effect of different level of phytase on visceral organ development of birds (d 13 to 28)	19
11	Economics of broiler production supplemented with varying levels of phytase	20

LIST OF TABLES

FIGURE NO.	TITLE	PAGE NO.
1	Renaphytase®	14
2	Weighing micronutrients	14
3	Weighing feed ingredients	14
4	Initial mixing of feed ingredients	14
5	Mixing of micro ingredients	14
6	Hand mixing of ration ingredients	14
7	Placing the DOC in the prepared brooding pan	15
8	Floor space for 6 birds	15
9	Immunization	15
10	Weighing of carcass	15
11	Sample preparation for bio-chemical test	15
12	Biochemical analysis	15

LIST OF FIGURES

LIST OF ABBREVIATIONS

<	Less than
>	Greater than
°C	Degree celsius
ANOVA	Analysis of variance
AOAC	Association of Official Analytical
	Chemists
AP	Alkaline phosphatase
BWG	Body weight gain
Ca	Calcium
CF	Crude fiber
cm	centimeter
СР	Crude protein
CRD	Completely randomized Design
CVASU	Chattogram Veterinary and Animal
	Sciences University
DM	Dry matter
DOC	Day old chick
e.g.	Example given
EE	Ether extract
et al.	And others
etc.	Etcetera
FCR	Feed conversion ratio

FI	Feed intake
FTU	Phytase unit
gm/kg	Gram per kilogram
GOT	Glutamic oxaloacetic transaminase
GPT	Glutamic pyruvic transaminase
i.e	That is
LSD	Least significance difference
LW	Live weight
ME	Metabolizable energy
Mg	Magnesium
ml	Milliliter
NFE	Nitrogen free extract
NRC	National research council
Р	Phosphorus
PC	Protein concentrate
sq.ft.	Square feet
Temp.	Temperature
Tk	Taka
TP	Total protein
viz.	Videlicet
Zn	Zinc

Abstract

The experiment was performed to evaluate the effect of phytase super dosing on performance, tibia bone quality and serum biochemistry of broiler chicken. Ninety-six day-old chicks were distributed randomly into four treatment groups: D0, D1, D2, D3 with four replicates per treatment (6 chicks per replicate). The treatment consists of control diet (D0), control diet + 500 FTU phytase/kg (D1), control diet + 1500 FTU phytase/kg (D2) control diet + 2500 FTU phytase/kg (D3). These experimental diets were fed to the birds from d 13 to 28. Birds were offered a commercial starter diet from d 0 to 12. The different levels of phytase had no significant effect on BWG and FI. Birds fed the D1 and D2 diets showed better (P < 0.05) FCR than those on D0 and D3 diet. The concentration of serum P and TP was highest (P<0.05) in birds consumed the D2 diet than birds fed other diets. There was no significant effect of phytase level on serum Ca and GPT, GOT, and AP levels. The length and width of the tibia bone were increased (P < 0.05) in birds fed D1 and D2 diet compared to those on other diets. Birds on D2 diet showed increased (P < 0.05) level of Ca content in tibia bone. The weight of the heart was increased (P < 0.05) in birds fed D0 and D3. The drumstick weight was greater (P < 0.05) in birds consumed D1 and D2 diets than those on D0 and D3 diets. Bird fed D1 and D2 diets showed lower total feed and production cost and had better total profit/kg live bird and cost: benefit ratio. In conclusion, supplementing the diet with 500 and 1500 FTU phytase/kg improved the overall production performance of broiler chickens and consequently enhanced the economic profitability.

Keywords: Phytase, cost-benefit analysis, serum P, bone quality