Effect of Heat Stress on the Productive and Reproductive Performances of Crossbred Dairy Cattle at Chattogram

AVIJIT DHAR

Roll No. 0118/06

Registration No. 493

Session: 2018-2019

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Dairy Science

Department of Dairy and Poultry Science
Faculty of Veterinary Medicine
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

DECEMBER 2019

Effect of Heat Stress on the Productive and Reproductive Performances of Crossbred Dairy Cattle at Chattogram

AVIJIT DHAR

Roll No. 0118/06

Registration No. 493

Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Professor Goutam Kumar Debnath Supervisor Department of Dairy and Poultry Science

Professor Dr. A K M Humayun Kober

Head & Chairman of the Examination Committee

Department of Dairy and Poultry Science

Department of Dairy and Poultry Science
Faculty of Veterinary Medicine
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

Authorization

I hereby declare that, I am the sole author of the thesis. I also authorize the

Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis

to other institutions or individuals for the purpose of scholarly research. I further

authorize the CVASU to reproduce the thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this

thesis provided to the CVASU Library, is an accurate copy of the print thesis

submitted, within the limits of the technology available.

Avijit Dhar

December 2019

iii

Dedicated to AHAD BHAI

ACKNOWLEDGEMENT

The author wishes to acknowledge the immeasurable grace and profound kindness of the creator and the supreme ruler of the universe Almighty "GOD" who empowers the author to complete the research work successfully.

At first the author would like to express his deep sense of respect and gratitude to **Professor Goutam Kumar Debnath**, Department of Dairy and Poultry Science, CVASU to have him as research supervisor. The author conveys his sincere gratitude to him for his guidance, suggestions, constant inspiration and constructive criticism for the successful completion of this research.

The author feels proud in expressing his deep sense of thanks *Dr. A. K. M. Humayun Kober*, Professor and Head, Department of Dairy and Poultry Science, CVASU for providing his guidance, valuable suggestions and constant inspiration to complete this research work.

The author humbly thanks to *Professor Dr. M. A. Hossain (Rony)*, Department of Dairy and Poultry Science, CVASU for providing his guidance and support to complete this research work. The author would like to thank all the other teachers and staffs of Department of Dairy and Poultry Science of CVASU, without their support and assistance this research work would be quite impossible to finish.

The author humbly expressing his thanks to *MD. Mannan*, *MD. Sujon*, *MD. Selim* helping hands of selected dairy farms and all of farm staffs and owners for their cordial and continuous support during this work. Without their helping hand and providing day and night assistance this research work would be quite impossible to finish.

The author would like to express his deep sense of gratitude and thanks to Honorable Vice Chancellor **Professor Dr. Goutam Buddha Das**, CVASU. The author privileges to acknowledge **CASR**, CVASU and **NST** for providing necessary research funds and other resources for this research work.

The author feels proud in expressing his deep sense of thanks to his parents, family members, seniors, juniors and well-wishers for their inspiration to finish this research.

The Author

December, 2019

CONTENTS

CHAPTER	SERIAL		SUBJECTS	PAGE
			Authorization	iii
			Acknowledgement	v
			List of figures	ix-x
			List of tables	xi
			List of abbreviations	xii-xiii
			Abstract	xiv
Chapter I			Introduction	1-6
Chapter II			Review of Literature	7-26
	2.1		Introduction	7-8
	2.2		Livestock of Bangladesh	8-9
	2.3		Global climate and seasonal overview	9-10
	2.4		Climatic critique of Bangladesh	10-13
	2.5		Temperature humidity index (THI)	13-14
	2.6		Heat stress of dairy animal	14-16
	2.7		Effect of heat stress on core body temperature of cattle	16-17
	2.8		Effect of heat stress on dry matter intake (DMI)	18-19
	2.9		Effect of heat stress on productive performances of cattle	19-21
	2.	9.1	On milk production	19-20
	2.	9.2	On milk composition	20-21
	2.10		Effect of heat stress on reproductive characteristics	21-25

CHAPTER	SERIAL	SUBJECTS	PAGE
	2.10.1	Estrous period and follicular growth	21
	2.10.2	Fertility	22
	2.10.3	Embryonic growth and development	22
	2.10.4	Calf birth weight	23
	2.10.5	Conception rate	23
	2.10.6	Post partum heat and days open	24
	2.10.7	Maturity of heifer	25
	2.10.8	Heat stress on reproductive disease	25-26
	2.11	Conclusion	26
Chapter III		Materials and Methods	27-37
	3.1	Study area	27
	3.2	Study period	27
	3.3	Selection of the farm	27
	3.3.1	Criteria for farm selection	28
	3.4	Animal Selection	28
	3.5	Animal management	29
	3.5.1	Cleaning of shed	29
	3.5.2	Deworming	29
	3.5.3	Vaccination	29
	3.5.4	Washing of animal	29
	3.5.5	Milking management	29
	3.5.6	Feeding management	29-31

CHAPTER	SE	RIAL	SUBJECTS	PAGE
	3.6		Calculation of Temperature humidity index (THI) in the selected farm	31
		3.6.1	Recording of temperature and relative humidity	31
	3.7		Measuring rectal temperature	32
	3.8		Collection of milk sample	32
	3.9		Testing of milk composition	32
		3.9.1	Procedure for test of fat (%) of milk	32
		3.9.2	Procedure for test of protein (%) of milk	32
	3.10		Data collection	33
		3.10.1	Production related data	33
		3.10.2	Reproduction data	33
		3.10.2.1	Conception rate	33
		3.10.2.2	Calf birth weight	33
		3.10.2.3	Days open	33
		3.10.2.4	Reproductive complications	33
	3.11		Data analysis	33
Chapter IV			Results	38-54
Chapter V			Discussion	55-59
Chapter VI			Conclusions	60
Chapter VII			Recommendations	61
Chapter VII			Limitations	62
Chapter VIII			References	63-81
			Appendix	82-86
			Brief bio-data of the student	87

LIST OF FIGURES

SL	TITLE OF THE FIGURES	PAGE
1	Schematic presentation of adverse affect of heat	5
	stress on dairy animal	
2	Effect of heat stress on reproductive performance	8
3	Schematic figure of thermoneutral zone and	15
	comfort zone	
4	Location of selected farms	27
5	Animal shed of farm A	34
6	Animal shed of farm B	34
7	Animal shed of farm C	34
8	Good ventilation of farm A	34
9	Very high stocking density in farm C	34
10	Optimum stocking density in farm A	34
11	Recording rectal temperature of selected cattles	35
12	Recording temperature and relative humidity of	35
	animal shed	
13	Parturition of cow	35
14	Heat stressed cow	35
15	Adding Sulfuric acid in butyrometer	36
16	Drawing 10.75ml milk sample	36
17	Adding amyl alcohol	36
18	Digestion of milk constituents	36
19	Centrifugation	36

SL	TITLE OF THE FIGURES	PAGE
20	Reading of fat	36
21	Drawing milk sample	37
22	Adding potassium oxalate	37
23	Adding phenolphthalein	37
24	Titration against 0.1N sodium hydroxide	37
25	Adding formaldehyde	37
26	Faint pink color	37
27	Percentile distribution of THI of selected farms in different time of the days.	39
28	Monthly average THI of different farms	40
29	Monthly average RT of different genotypes in farm A	42
30	Monthly average RT of different genotypes in farm B	43
31	Monthly average RT of different groups of animal in farm C	44
32	Conception rate of selected genotypes in different month	49
33	Average days open of three genotypes in higher and lower THI	50
34	Monthly average birth weight of calf of different genotypes in different months.	51
35	Incidence of abortion in different month	52
36	Incidence of dystocia in different month	53
37	Incidence of dystocia in different month	54

LIST OF TABLES

SL	TITLE OF THE TABLES	PAGE
1	Livestock population (in lakh) overview from 2015-2018	8
2	Contribution of Livestock in the National Economy of BD	9
3	Estimated Demand, availability and deficit% of milk from 2015 to 2030 in Bangladesh	9
4	Seasonal Temperature, Rainfall and Humidity	10
5	Lower and upper critical temperature of dairy animal	15
6	Effect of heat stress on dairy cattle at different THI	16
7	Animal selection for production record	28
8	Composition of feedstuffs	29
9	Daily feedstuffs consumption per cow of genotype G_1 (HF50%×L50%)	30
10	Daily feedstuffs consumption per cow of genotype G ₂ (HF75%×L25%)	30
11	Daily feedstuffs consumption per cow of genotype G3 (HF50%×S50%)	31
12	Available stock description of selected farms	38
13	Housing managements of selected farms	38
14	Average Milk production (L/day/cow) of all the selected genotypes in each study farm	44
15	Average Milk production (L/cow/day) of all the three genotype in each farm	45
16	Monthly average milk production (L/day/cow) of genotype G_1,G_2 and G_3 in Farm A, B and C	46
17	Monthly average fat percentage of genotype G_1,G_2 and G_3 in Farm A, B and C	47
18	Monthly average protein percentage of genotype G_1 , G_2 and G_3 in Farm A, B and C	48

LIST OF ABBREVIATIONS

Abbreviations	Elaborations
%	Percentage
°C	Degree Celsius
°F	Degree Fahrenheit
<	Less than
>	Greater than
0.1N	0.1 Normal
ACTH	Adrenocorticotropic Hormone
ANOVA	Analysis of variance
BBS	Bangladesh Bureau of Statistics
DMI	Dry matter Intake
CBW	Calf birth weight
CMA	Chattogram Metropolitan Area
СР	Crude protein
CR	Conception rate
CVASU	Chattogram Veterinary and Animal Sciences University
DLS	Department of Livestock Services
et al.	And his associates
etc.	Etcetera
FSH	Follicle stimulating hormone
GDP	Gross Domestic Product
HF	Holstein Friesian
hrs	Hours

Kilogram kg L Local-bred LH Luteinizing hormone Milligram mg Milliliter ml RTRectal Temperature S Sahiwal sq. km Square Kilometer

Temperature Humidity Index

THI

ABSTRACT

Cattle among the other livestock species found in Bangladesh are the most versatile component in consideration to existing integrated agricultural farming system. Chattogram is one of the most dairy developed districts of Bangladesh in the aspect of commercial dairy farming. The present study intended to determine the effect of heat stress on productive and reproductive performances of the dairy cattle of Chattogram at different farming conditions. In context of this objective, three commercial dairy farms (denoted as farm A, B, C) from Chattogram were selected considering differences in housing conditions and availability of crossbred genotypes. From the selected farms 27 cows (3 from each genotype of same lactation, from each farm) of different genotypes, grouped as G₁ (HF50%×L25%), G₂ (HF75%×L25%), G₃ (HF50%×S50%) were picked to determine the productive performances. Along with these all dairy cows of mentioned genotypes from selected farms (n=173) were observed during the experimental period for determining the reproductive performances. During the experimental period from December, 2018 to June, 2019 the highest average temperature humidity index (THI) were 66.22±5.55, 69.82±5.83, 72.80±5.42, 76.43±2.89, 78.93±1.75, 80.29±2.06 and 83.58±2.77 in December, January, February, March, April, May and June, respectively obtained from Farm C compared to farm A and B. The differences of THI between three farms were significant (p<0.05). The highest rectal temperature (RT) was 39.36±0.05°C observed in genotype G₂ during June and the lowest was 38.5± 0.11°C observed in genotype G₁ during December. The differences of RT in three groups were significant (p<0.05). Highest average milk yield was 18.88±0.58 L/day/cow in case of genotype G₂ during January and the lowest was 9.11±0.12 L/day/cow in genotype G₁ during June. The differences of milk production among different genotypes in different months were significant (p<0.05). In case of milk composition (Fat, protein) highest average percentage were obtained during cooler month and the lowest during month with low THI. As compared to G₁ and G₃ genotypes milk production and composition of G₂ genotype had more negative impact by increased THI. For all genotypes group, the highest conception rate (62.5, 61.53 and 57.14% in G₁, G₂ and G₃ genotype, respectively) was recorded in the month of December whereas the lowest rate (50, 30, and 42.12 in G₁, G₂ and G₃ genotype, respectively) was observed in the month of June. The mean days open in selected groups were higher during cooler months and lower during hotter months of the trial. The highest CBW was 35.75±1.06 kg during January in genotype G₂ and which was declined upto 17.5% during May when THI exceeds thermoneutral zone. Incidence of abortion, dystocia and retained placenta were higher 66.66%, 40% and 42.85%, respectively during the month with high THI due to heat stress condition of the pregnant cows. From the result it can be concluded that housing system plays an important role in THI of the stanchion barn, that increased THI clearly affect the productive and reproductive performances of crossbred dairy cows. Cows with higher temperate blood percentage in the study are more prone to heat stress.

Key Words: Heat stress, Crossbred, Temperature-humidity index, Production, Reproduction.

