

COMPARATIVE EVALUATION OF NUTRITIONAL COMPOSITION AND FUNCTIONAL PROPERTIES OF TWO VARIETIES OF WATERMELON SEED IN BANGLADESH

Jainal Akter Japu

Roll No.: 0118/16 Registration No.: 00557 Session: July – Dec, 2019

A thesis submitted in the partial fulfillment of the requirements for the degree of Masters of Science in Applied Human Nutrition and Dietetics

> Department of Applied Food Science and Nutrition Faculty of Food Science and Technology Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > December 2019

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Jainal Akter Japu December, 2019

COMPARATIVE EVALUATION OF NUTRITIONAL COMPOSITION AND FUNCTIONAL PROPERTIES OF TWO VARIETIES OF WATERMELON SEED IN BANGLADESH

Jainal Akter Japu

Roll No.: 0118/16 Registration No.: 00557 Session: July – Dec, 2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

(Mohammad Shaokat Ali) Supervisor Department of Applied Chemistry and Chemical Technology (Taslima Ahmed) Co-supervisor Department of Applied Food Science and Nutrition

(Md. Altaf Hossain) Chairman of the Examination Committee Department of Applied Food Science and Nutrition Faculty of Food Science and Technology Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh December 2019

DEDICATED TO MY RESPECTED AND BELOVED PARENTS AND TEACHERS

Acknowledgements

Firstly, I would like to express my deepest sense to the "Almighty Allah" Whose blessings has enabled me to complete the research work and dissertation successfully for the degree of Master of Science (MS) in Applied Human Nutrition and Dietetics under Dept. of Applied Food Science and Nutrition, ChattogramVeterinary and Animal Sciences University, Chattogram, Bangladesh

At this moment of accomplishment, I am grateful to my supervisor Mr. **Mohammad Shaokat Ali,** Assistant Professor, Department of Applied Chemistry and Chemical Technology, CVASU for his supervision and guidance in successful completion of this work. It was really a great pleasure and amazing experience for me to work under his supervision and it was impossible to complete the dissertation without his constructive supervision

I would like to thank my co-supervisor Ms. **Taslima Ahmed**, Assistant Professor, Department of Applied Food Science and Nutrition, CVASU for her guidance and invaluable support in all stages of my research.

I am highly grateful to my respected teacher Mr. **Md. Altaf Hossain**, Head, Department of Applied Food Science and Nutrition for his worthy inspiration and generous help in carrying out of the research work. I thank all the teachers of Faculty of Food Science and Technology for their valuable suggestions and support during the research program.

I sincerely thank to all members of Department of Applied Food Science and Nutrition, Food Processing and Engineering, Animal Science and Nutrition and Physiology, Biochemistry and Pharmacology for their constant inspiration and kind co-operation in performing the research activities precisely.

I express my deepest sense of gratitude, cordial respect of feelings to my beloved family members and dearest classmates for their immense sacrifice, blessings love and encouragement

Author

December 2019

Chapter	Contents	Page
	Authorization	ii
	Acknowledgements	v
	List of tables	ix
	List of figures	Х
	List of Abbreviations	xi
	Abstract	xii
Chapter 1	Introduction	1
	1.1 Aims and Objective of the study	3
Chapter 2	Review of Literature	4
	2.1 Watermelon	4
	2.2 Watermelon Seed	4
	2.3 Proximate Composition of Watermelon Seed	5
	2.4 Minerals Content of Watermelon Seed	6
	2.5 Phytochemical Compound of Watermelon Seed	7
	2.6 Functional Properties of Watermelon Seed	7
	2.7 Health Benefits of Watermelon Seed	8
	2.8 Conclusion	8
Chapter 3	Materials and Methods	9
	3.1 Study Location and Period	9
	3.2 Sample Collection	9
	3.3 Processing of Watermelon Seed	9
	3.4 Determination of Proximate Composition of	11
	Watermelon Seed	
	3.4.1Moisture Content	11
	3.4.2 Ash Content	11
	3.4.3 Crude Protein Content	12
	3.4.4 Crude Fiber Content	13
	3.4.5 Carbohydrate Content	14
	3.4.6 Energy Value	14

Table of Contents

	3.5 Determination of Minerals Content of Watermelon	14
	Seed	
	3.5.1 Sample Preparation	14
	3.5.2 Calcium (Ca) Content	14
	3.5.3 Potassium (K) Content	15
	3.5.4 Iron (Fe) Content	16
	3.5.5 Magnesium (Mg) Content	16
	3.5.6 Copper (Cu) Content	18
	3.5.7 Zinc (Zn) Content	18
	3.6 Determination of Phytochemical Compound of	19
	Watermelon Seed	
	3.6.1 Crude Alkaloids Content	19
	3.6.2 Saponins Content	19
	3.7 Analysis of Functional Properties of Watermelon Seed	20
	3.7.1 Water Absorption Capacity (WAC)	20
	3.7.2 Oil Absorption Capacity (OAC)	20
	3.7.3 Emulsion Activity (EA)	21
	3.7.4 Emulsion stability (ES)	21
	3.7.5 Foam Capacity and Stability (FC and FS)	21
	3.8 Statistical Analysis	22
Chapter 4	Results	23
	4.1 Proximate Composition of Watermelon Seed	23
	4.2 Energy Value of Watermelon Seed	24
	4.3 Minerals Content of Watermelon Seed	24
	4.4 Phytochemical Compound of Watermelon Seed	25
	4.5 Functional Properties of Watermelon Seed	26
Chapter 5	Discussions	30
	5.1 Proximate Composition of Watermelon Seed	27
	5.2 Minerals Content of Watermelon Seed	29
	5.3 Phytochemical Compound of Watermelon Seed	29
	5.4 Functional Properties of watermelon	30

Chapter 6	Conclusion	31
Chapter 7	Recommendations & future perspectives	32
	References	33
Appendices	Photo Gallery	38
Appendix I	Processing of Watermelon Seed	39
Appendix II	Experimental Analysis of Watermelon Seed	40
	Brief Biography	41

Table	Table Name	Page
4.1	Proximate Composition of Watermelon Seed	23
4.3	Minerals Content of Watermelon Seed	25
4.4	Phytochemical Compound of Watermelon Seed	25
4.5	Functional Properties of Watermelon Seed	26

List of Tables

List of Figures

Figure	Figure Name	
3.2	Watermelon Seed Collection Location of Chattogram	9
3.3	Processing of Watermelon Seed	10
4.2	Comparison of Energy Value between two varieties of Watermelon Seed	25

Abbreviations		Elaboration
% AOAC	:	Percentage Association of Official Analytical Chemists
g	:	Gram
mg	:	Milligram
μg	:	Microgram
Kcal	:	Kilo Calorie
ррт	:	Parts Per Millions
WAC	:	Water Absorption Capacity
OAC	:	Oil Absorption Capacity
EA	:	Emulsion Activity
ES	:	Emulsion Stability
FA	:	Foam Activity
FS	:	Foam Stability
SD	:	Standard Deviation
SPSS	:	Statistical Package for Social Science
CVASU	:	Chattogram Veterinary and Animal Sciences University
USA	:	United State of America

List of Abbreviations

Abstract

The study was carried out to investigate the nutritional composition and functional properties of two varieties seed of Watermelon such as Crimson red and Charleston gray with a view of harnessing them for consumption as food and possible industrial usages. The dried seeds were evaluated by using standard method for different characteristics such as nutritional, phytochemical and functional properties to perceive the potential benefits of that seed. The result of the two varieties (Crimson red and Charleston gray) of Watermelon seed indicated that both varieties of Watermelon seed were rich in energy (469.60±0.01Kcal/100g, 408.85±0.01Kcal/100g), crude fat (36.61±0.01%, 30.65±0.01%), crude protein (27.21±0.01%, 22.51±0.01%), crude fiber $(21.55\pm0.01\%, 29.85\pm0.01\%)$ and minerals in mg/100g such as phosphorus (540.33±0.57, 320.33±0.57), magnesium (360.33±0.57, 310.33±0.57), calcium potassium (124.33±0.57, 28.33±0.57), iron (20.13±0.006, 14.24±0.006), (20.67±0.006, 6.64±0.006) and phytochemical compound such as crude alkaloid (14.05±0.006%, 10.56±0.006%) respectively. In comparison, the crude fat, crude protein, energy and crude alkaloid were found to be high in amount in the Crimson red seed compared to Charleston gray seed variety. On the other hand, the crude fiber was higher in Charleston gray variety seed. The present study revealed that both varieties of Watermelon seed characterized with good functional properties. Therefore, watermelon seed can be incorporated in formulation of food for consumption and industrial purpose as well.

Keyword: Watermelon seed, nutritional composition, phytochemical compound, functional properties.