

ASSESMENT OF HEAVY METAL ACCUMULATION IN DIFFERENT ORGANS OF CULTURED PANGUS (THAI) AND TILAPIA ALONG WITH OBSERVATION OF THE ENZYMATIC ACTIVITIES IN THOSE ORGANS

Maria Al Mazed

Roll No. : 0118/07 Registration No. : 0595 Session: 2018-2019

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

> Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > December 2019

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Maria Al Mazed

ASSESMENT OF HEAVY METAL ACCUMULATION IN DIFFERENT ORGANS OF CULTURED PANGUS (THAI) AND TILAPIA ALONG WITH OBSERVATION OF THE ENZYMATIC ACTIVITIES IN THOSE ORGANS

Maria Al Mazed

Roll No.: 0118/07 Registration No. : 0595 Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Sk. Istiaque Ahmed

Dr. Sk Ahmad Al Nahid

Supervisor

Co-supervisor

Dr. Sk Ahmad Al Nahid

Chairman of the Examination Committee

Department of Fisheries Resource Management Faculty of Fisheries Chittagong Veterinary and Animal Sciences University Chittagong-4225, Bangladesh December 2019

ACKNOWLEDGEMENTS

All the praises and thanks to Allah, the Almighty, most gracious, most merciful, most benign who has enabled me to pursue my study in fisheries science successfully as well as to submit the thesis for the degree of Master of Science (MS) in Fisheries Resource Management and also pay gratitude to the Almighty for enabling and giving me enough strengths to complete my research work as well as thesis within due course of time.

I expresses m gratitude and indebtedness to honorable Vice-Chancellor, **Professor Dr. Goutam Buddha Das**, Professor **Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU from the bottom of my heart for their immense administrative support to complete my research work.

I expresses my great appreciation to **Dr. Sk Ahmad Al Nahid**, Head and Assistant Professor, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, for his valuable and constructive suggestions during the writing of research proposal. His willingness to give his time to teach on write up scientific research proposal so generously has been very much appreciated.

I also sincerely expresses my thanks to my research supervisor **Sk. Istiaque Ahmed** Assistant Professor, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram for his valuable guidance, intellectual suggestions, knowledge, patience, and time .It would never have been possible for me to complete this work without his strong support and encouragement.

I expresses my cordial thanks to **Mr Fahad Bin Quader**, Head and Assistant Professor, Department of Applied Chemistry and Chemical Technology, Chattogram Veterinary and Animal Sciences University, Chattogram for his unfailing support, authoritative guidance, constructive criticism, advice and continuous motivation.

I am extremely glad to take opportunity to express my heartfelt thanks and gratitude to all other respected teachers of the Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram for their valuable teaching and continuous encouragement during the study period in fisheries. I also expresses my thanks to lab technician Supria Biswas, Eden Dutta, Bokhtiar and also cordially thanks to all the staff members of the Aquatic Ecology laboratory for their cooperation during laboratory analysis.

It's my fortune to gratefully acknowledge the support of my friend Tania Sharmin and Zannatun Nur Popy for their support and generous care throughout the research tenure.

Finally I also expresses my heartfelt gratitude to my beloved parents Nasir Uddin and Farzana Sultana for selfless love, blessings, care, dedicated efforts, valuable prayers, continuous support during the academic life. I also expresses my thanks to my sister and brother for their support and valuable prayers during research work.

The Author

CONTENTS

CHAPTER	TITLE	PAGE NO.
	AUTHORIZATION	ii
	ACKNOWLEDGEMENTS	iv-v
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	LIST OF PLATES	ix
	LIST OF ABBREVIATIONS	X
	ABSTRACT	
	INTRODUCTION DEVIEW OF LITEDATUDE	1-5 6 13
	KEVIEW OF LITEKATURE	0-13
3	MATERIALS AND METHODS	14-19
	3.1 Sample collection	14-15
	3.2 Dissecting and preserving of fish sample	16
	3.3 Digestion and sample analysis	17
	3.4 Heavy Metal Analysis	18
	3.5 Enzyme analysis	18
	3.6 Data analysis	19
4	RESULTS	20-27
	4.1 Different heavy metals concentration in gill of	20
	cultured pangus	
	4. 2 Different heavy metals concentration in liver of	20
	cultured pangus	
	4.3 Different heavy metals concentration in kidney of	21
	cultured pangus	
	4.4 Different heavy metals concentration in muscle of	21
	cultured pangus	
	4.5 Different heavy metals concentration in gill of	22
	cultured Tilapia	
	4.6 Different heavy metals concentration in liver of	22
	cultured tilapia	
	4.7 Different heavy metals concentration in kidney of	23
	cultured tilapia	
	4.8 Different heavy metals concentration in muscle of	23

	cultured Tilapia	
	4.9 ATPase activity in different investigated organs of cultured pangus	24
	4.10 ATPase activity in different organs of cultured Tilapia	25
	4.11 ALP activity in different organs of cultured pangus	25
	4.12 ALP activity in different organs of cultured Tilapia	26
5	DISCUSSION	28-35
6	CONCLUSIONS	36-37
7	RECOMMENDATION AND FUTURE PERSPECTIVES	38-39
	References	40-47
	Brief Biography	48

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1	Average concentration of different heavy metals in examined organs of cultured Pangus and Tilapia	28

FIGURE NO.	TITLE	PAGE NO.
1	Different heavy metals concentration in gill of cultured Pangus	21
2	Different heavy metals concentration in liver of cultured Pangus	21
3	Different heavy metals concentration in kidney of cultured Pangus	22
4	Different heavy metals concentration in muscle of cultured Pangus	22
5	Different heavy metals concentration in gill of cultured Tilapia	23
6	Different heavy metals concentration in liver of cultured Tilapia	23
7	Different heavy metals concentration in kidney of cultured Tilapia	24
8	Different heavy metals concentration in muscle of cultured Tilapia	24
9	ATPase activity as μg of phosphorus mg protein ⁻¹ (37°C) in different organs of cultured Pangus	25
10	ATPase activity as μg of phosphorus mg protein ⁻¹ (37°C) in different organs of cultured Tilapia	26
11	ALP activity as n moles of para-nitrophenol mg protein ⁻¹ (37°C) in different organs of cultured Pangus	26
12	ALP activity as n moles of para-nitrophenol mg protein ⁻¹ (37°C) in different organs of cultured Tilapia	27

LIST OF FIGURES

PLATES NO.	TITLE	PAGE NO.
1	Sampling area	16
2	Sample storage	17
3	Sample weighing	17
4	Measuring length	17
5	Labelling	17
6	Fish dissecting	18
7	Dissect fish organs	18
8	Adding formalin	18
9	Preserving fish	18
10	Sample weighing for drying	19
11	Hot air oven dry	19
12	Acid mixing for digestion	19
13	Digestion tube setting	19
14	Sample ready for heavy metal analysis	20
15	Atomic Absorption Spectrometry for metal analysis	20

LIST OF PLATES

LIST OF ABBREVIATIONS

HMs	Heavy Metals
DoF	Department of Fisheries
As, Pb, Cr	Arsenic, Lead, Chromium
ATPase	Adenosine triphosphates
ALP	Alkaline phosphatase
AAS	Atomic Absorption Spectrometry
BFRI	Bangladesh Fisheries Research Institute
NFI	National Fisheries Institute
FAO	Food and Agriculture Organization
WHO	World Health Organization
FY	Fiscal Year
SD	Standard Deviation

ABSTRACT

Heavy metal pollution in aquatic environment has emerged as a worldwide concern in recent times. The aquaculture commodities in Bangladesh are serving exclusively to supplement the country's animal protein demand. Therefore, to evaluate the safety issues in terms of heavy metal accumulation, two important aquaculture species of the country (Tilapia and Thai Pangus) were examined in this study. The concentration of heavy metals were determined by traditional tissue processing through dissection, drying and acid digestion followed by Atomic Absorption Spectrometry (AAS) analysis. In terms of organs of the investigated fishes, the heavy metals were mostly concentrated in the kidney tissues but the concentration in muscles were found to be the lowest which is indeed a positive finding as humans consume the muscles widely even though the concentration of Arsenic in muscles were recorded higher than the safety values recommended by FAO/WHO for both the cases. It has been revealed that the values recorded for Arsenic exceeded the limits in every case because the water itself used for culture may contain Arsenic particularly as the study site was a coastal basin like Chattogram along with indiscriminate use of Arsenic pesticides, large-scale industrial activities, mining operations and so-on. Fortunately, the values of other two investigated heavy metals- Lead and Chromium remained within the safety levels. The study was also intended to observe the enzymatic activities of different organs of these two fishes by following the standard procedures described in previous literatures. The ATPase activity was recorded the highest in the kidney tissues followed by the livers and gills while the lowest was observed in muscle tissues for both fishes. In case of ALP, the highest value was recorded in the livers for Pangus and in kidneys for Tilapia respectively. Likewise the ATPase activity, the lowest values for ALP activity were recorded for muscle tissues in both investigated fishes. This was mainly because the mitochondria of kidney and liver tissues are better catalyzer of enzymes than the mitochondria of muscle tissues. In conclusion, the study suggests that the source of water used for culturing these highly growing aquaculture species should be free from heavy metal pollution for ensuring public safety even though the enzymatic activities recorded in different organs are considerably aligned with the normal range.

Key words: Heavy metals; Cultured Thai pangus & Tilapia; Investigated Organs, Alkaline phosphatase (ALP Activity) and ATPase