

Gametogenic cycle with seasonal variation of *Perna* viridis in Moheskhali Channel, Bangladesh

Aysha Rahi Noor

Roll No.: 0118/05

Registration No.: 586

Session: 2018-2019

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Marine Bioresource Science

Department of Marine Bioresource Science Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University Chattogram 4225, Bangladesh

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

(Aysha Rahi Noor)

Gametogenic cycle with seasonal variation of *Perna* viridis in Moheskhali Channel, Bangladesh

Aysha Rahi Noor Roll No. : 0118/05 Registration No. : 586

Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Avijit Talukder Dr. Helena Khatoon
Supervisor Co-supervisor

Avijit Talukder
Chairman of the Examination Committee

Department of Marine Bioresource Science
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Khulshi, Chattogram-4225, Bangladesh

ACKNOWLEDGEMENTS

Foremost, I want to endeavor to Almighty Allah for the wisdom he bestowed upon me, the strength, peach of mind and good health in order to finish the research. I would like to express my gratitude toward my supervisor Avijit Talukder, co-supervisor Dr. Helena khatoon and Dr. Asaduzzaman, principal investigator of research for imparting their knowledge and guiding me to the right way to complete the work. I express my special thanks to honorable Dean of The Faculty of Fisheries, Dr. Mohammed Nurul Absar Khan and the university administration for allowing me to conduct the research in faculty laboratory.

The author is also grateful to the Ministry of science and technology and University grants commission of Bangladesh for funding the research. I also acknowledge my coworkers, friends and lab technicians, supportive staffs of oceanography, genetics and nutrition lab for their help throughout the research work. Finally, heartiest thanks to my beloved family members for their support and sacrifice, encouragement.

The author June 2019

Table of Contents

Chapter	Chapter Title				
		no.			
Chapter	Introduction	1-3			
One	1.1 Background				
	1.2 Research Objectives	3			
	1.3 Research questions	3			
Chapter	Review of Literature				
Two	2.1 Importance of green mussel in Bangladesh	4			
	2.2 General feature of green mussel				
	2.3 Gametogenic cycle	5			
	2.4 Water quality parameters affecting gametogenic	6			
	cycle				
	2.5 Condition index	6-7			
Chapter	Methodology	8-14			
Three	3.1 Sample collection and transportation	8			
	3.2 Morphometric data collection	9			
	3.3 Length - Weight Relationship	9			
	3.4 Condition index (CI)	10			
	3.5 Determination of meat yield	10			
	3.6 Gonadosomatic Index (GSI)	10			
	3.7 Histological process	11-13			
	3.8 Ranking	13			
	3.9 Gonadal index	14			
	3.10 Data Analysis	14			
Chapter	Results	15-30			
Four	4.1 length - Weight relationship	15-16			
	4.2 Sex - ratio	16-17			
	4.3 Developmental stages of gonad	17-20			
	4.3.1 Resting	17			
	4.3.2 Development A	18			
	4.3.3 Development B	18			
	4.3.4 Development C	18			
	4.3.5 Development D	18			
	4.3.6 Mature	19			
	4.3.7 Spawning A	19			
	4.3.8 Spawning B	19			
	4.3.9 Spawning C	20			
	4.3.10 Spent	20			
	4.4 Seasonal variation in gametogenesis	21			
	4.4.1 Monthly gonad development stages	21-23			
	4.4.2 Gonad Index	24			
	4.4.3 Gonadosomatic Index	24-25			

	References	37-44
Seven		
Chapter	Recommendation and future perspective	36
Chapter Six	Conclusion.	35
	5.4 Condition Indices	33-34
	5.3 Water quality parameters	33
	5.2 Sex ratio and gametogenic cycle	31-32
Five	5.1 Length - weight relationship	31
Chapter	Discussion	31-36
	4.8 Seasonal variation in Condition index	29-30
	4.7 Seasonal variation in meat yield	28
	4.6 Water quality parameters	26-28
	4.5 Egg diameter	26

List of Tables

Table No.	Title	Page No.
1	sampling schedule	9
2	Protocol of histological procedure of green mussel gonad	11
3	The staining schedule	13
4	Ranking criteria for determining gonad index	14
5	Observation of relationship between different lengths	16
	dimensions and weight [Total Weight (TW), Soft Tissue	
	Weight (STW)]	
6	A review of the number of male and female with their	17
	ratio of Perna viridis	
7	Eigenvalue and % variance of principal component	26
8	Loading variables for principal component 1 and 2	28
9	List of condition index from previous study	35

List of Figures

Figure No.	Title	Page No.	
1	Sampling site	8	
2	Draining out internal fluid	9	
3	Morphometric data Collection of gonad	10	
4	(a) Green Mussel Gonad, (b) Gravid Female Mussel	11	
	and (c) Matured Male Mussel		
5	Tissue Embedding, Tissue sectioning, Sectioned tissue	12	
	in microtome and Staining		
6	Relationship between different shell dimension (Total	16	
	length, shell height, shell width) and weight of green		
	mussel Perna viridis		
7	Proportion of male, female and undifferentiated	17	
	individuals of Perna viridis collected from		
	Moheshkali Channel		
8	Histological view of resting or immature stage, no	18	
	traces of gonad (mag. ×40) (n= neucleus)		
9	Development stages of male and female	19	
10	Histological view of mature and spawning stages of	20	
1.1	male and female <i>P. viridis</i>	20	
11	Histological view of spent gonad stages in female (F)	20	
10	and male (M) Perna viridis	22	
12	Percentage of gonad development stage of male and	22	
10	female Perna viridis	20	
13	Percentage of gonad development stage of male and	23	
	female <i>Perna viridis</i> from (In May and August 2018		
	male and female were 100% resting phase occurred;		
	Dev = development, Spaw = Spawning).		
14	Monthly mean gonad index of male and female	24	
15	Monthly variation of GSI (%); B) variation of GSI in	25	
	male and female		
16	Gonad development cycle	25	
17	Egg diameter counting	26	

Figure No.	Title	Page No.		
18	PCA graph (x axis- Component 1, Y axis- Component			
	2) based on 15 water quality variables			
19	Monthly meat yield of Perna viridis from Moheskhali	28		
	Channel (data represented as mean, standard deviation			
	and standard error)			
20	Monthly meat yield of Perna (data represented as	29		
	mean, standard deviation and standard error)			
21	Monthly dry condition index of Perna viridis from			
	Moheshkhali Channel (data represented as mean,			
	standard deviation and standard error)			
22	Dry condition index of Perna viridis (data represented	30		
	as mean, standard deviation and standard error)			
	between genders			

List of Appendices

Appendix	Title	Page no.
1	Monthly Meat yield data	45
2	Monthly value of CI (dry)	46
3	F value and p value of water quality parameters	47
	(significant at value < 0.05)	

List of Abbreviation

CI Condition Index

GI Gonad Index

GSI Gonadosomatic index

SPSS Statistical package for social science

Sp Species

PAST Paleontological statistics

ANOVA Analysis of variance

g/cm³ Gram per centime cube

DO Dissolve oxygen

Ml Milligram

M Meter

Ppt Parts per thousand

Mg/L Milligram per liter

°C Degree Celsius

m/s Meter per second

< Less than

> Greater than

Et al And his associates

Etc. Et cetera

% Percentage

Ppm Part per million

Ft Feet

Cm Centimeter

CVASU Chattogram Veterinary and Animal

Sciences University

ABSTRACT

Green mussel (*Perna viridis*) is one of the most potential mariculture shellfish species not only in context of Bangladesh but also for the world. A thorough study on the reproductive biology of *P. viridis* and determination of the accurate spat collection time is essential to develop the green mussel culture technology. Therefore, the main purposes of this study was to determine dynamics of the gonadal development accurately through histology, and to find how condition index (CI) is linked with the spawning of the green mussel. Twenty green mussel were collected each month from November 2017 to October 2018 from Moheskhali Channel, Chawfaldandi, Cox's Bazar. Collected samples were brought to the laboratory to measure body length, body weight, muscle weight, and dry weight. The general reproductive condition of the population were assessed by calculating mean gonadal index (GI). From the histological analysis, the sex ratio of male and female was found tas 1:0.93 and no evidence of hermaphroditism in P. viridis were documented. There was a significant relationship between length and weight where R² value was found to be 0.92, indicating a positive correlation between this parameters. The male CI value was relatively higher than female. The highest value of female and male GI were observed to be 2.1 and 2.4 in the month of January and February, respectively, and a minor increase was observed in the month of June. GSI (gonadosomatic index) value was found to be generally higher in male than female. The study confirmed that the spawning of green mussel occurred twice in a year with major spawning season from November to March and a very minor spawning during the month of June to July. However the study will be helpful for naturally occurring green mussel stock management and to develop future aquaculture aspect in Moheskhali Channel.