

Potential for green mussel (*Perna viridis*) Culture in the Naf River of Bangladesh

Md. Abdullah Al Mahmud

Roll No. 0118/03 Registration No. 584 Session: 2018-2019

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Marine Bioresource Science

> Department of Marine Bioresource Science Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **JUNE 2019**

AUTHORIZATION

Authorization I hereby declare that I am the sole author of the thesis. I authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

(Md. Abdullah Al Mahmud)

Potential for green mussel (*Perna viridis*) Culture in the Naf River of Bangladesh

Md. Abdullah Al Mahmud

Roll No. 0118/03 Registration No. 584 Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

(Prof. Dr. Mohammed Nurul Absar Khan)

(Avijit Talukder)

Supervisor

Co-supervisor

(Avijit Talukder) Chairman of the Examination Committee Department of Marine Bioresource Science

Department of Marine Bioresource Science Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh

JUNE 2019

Thís thesis is dedicated to my beloved parents

Acknowledgment

I am indebted to Almighty Allah who enabled me with courage, strength and patience to complete the research work and write up the dissertation successfully within due time of course.

I would like to convey my sincere thanks and gratitude to my supervisor **Prof. Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU for his valuable supervision and guidance. It was really a great pleasure and amazing experience for me to work under his supervision. I really deemed it and I realized it was an opportunity for me to work under his creative guidance.

It's my pleasure to convey my profound gratitude to my co-supervisor **Avijit Talukder**, Assistant Professor and Head, Dept. of Marine Bioresource Science, CVASU for his valuable advice, scholastic guidance, suggestions and inspiration.

I am greatly indebted to **Dr. Md. Asaduzzaman**, Assistant Professor, Dept. of Marine Bioresource Science, CVASU for his encouragement and cooperation at every stage of this study from its inception to completion.

I sincerely express deepest sense of gratitude and indebtedness to Faculty of Fisheries and University administration for following me working in faculty laboratory and financial support to complete my research.

I am also grateful to **Abrar Shakil, Nayeema Ferdousi Houqe and Sumi Akter, Lecturer,** Department of Marine Bioresource Science, CVASU for their inspiration, technical support and kind suggestion during the research work.

My sincere thanks also go to **Aysha Rahi Noor**, **Pretom Chowdhory** for their co-operation during sample collection and examination in the laboratory which made my work easier.

I am also acknowledging the Lab assistant, Technicians and supporting staffs of Oceanography lab, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University (CVASU) for their help during sample examination in the laboratory.

Last but not least, I express my deepest sense of gratitude to my beloved parents for their immense sacrifice, blessings and encouragement.

The Author

Md. Abdullah Al Mahmud

Table of Contents

Chapter	Title	Page No.
	Authorization	II
	Acknowledgement	V
	Abstract	XIII
Chapter One	Introduction	1-3
	1.1 Objectives of the research work	2
	1.2 Research question	3
	1.3 Limitations of the study	3
Chapter Two	Review of Literature	4-10
	2.1 Biology of the green mussel	4-6
	2.1.1 Feeding habits	5
	2.1.2 Growth	5
	2.1.3 Habitat	6
	2.2 Culture aspects of green mussels	6-9
	2.2.1 Site selection for green mussel culture	7
	2.2.2 Water depth	7
	2.2.3 Turbidity	8
	2.2.4 Salinity	8
	2.2.5 Temperature	8
	2.2.6 Food organisms	9
	2.2.7 Plankton composition	9
	2.3 Feasibility study for green mussel culture	9-10
Chapter Three	Materials and Methods	11-17
	3.1 Study area	11
	3.2 Sampling frequencies and studied parameters	12-15
	3.2.1 Sample collection	12
	3.2.2 Biophysical condition determination	12
	3.2.2.1 Analysis of physico-chemical water quality parame	eters 12
	3.2.2.2 Estimation of nutrient composition	12-14
	3.2.3 Qualitative and quantitative estimations of plankton	15
	3.3 Site suitability detection for <i>P. viridis</i> farming	15-16
	3.4 Data Analysis	17

Chapter Four	Results	18-38
	4.1 Water quality parameters	18-29
	4.1.1 Temperature	18
	4.1.2 Transparency	19
	4.1.3 Turbidity	19
	4.1.4 pH	20
	4.1.5 Dissolve oxygen	21
	4.1.6 Salinity	21
	4.1.7 Depth	22
	4.1.8 Alkalinity	23
	4.1.9 Nitrate	23
	4.1.10 Nitrite	24
	4.1.11 Phosphate	24
	4.1.12 Ammonia	25
	4.1.13 Ammonium	26
	4.1.14 Chlorophyll-a	26
	4.2 Plankton composition	29-36
	4.2.1 Phytoplankton composition	29-35
	4.2.1.1 Bacillariophyceae	29
	4.2.1.2 Chlorophyceae	30
	4.2.1.3 Dinophyceae	31
	4.2.1.4 Pyrrophyceae	32
	4.2.2 Zooplankton composition	35-36
	4.3 Site suitability for P. viridis farming	37
Chapter Five	Discussion	38-42
	5.1 Environmental variables	38-39
	5.2 Plankton composition	39-40
	5.3 Site suitability for P. viridis farming	40-41
Chapter Six	Conclusion	42
Chapter Seven	References	43-48
	Appendices	49-57
	Brief Biography of the Author	58

List of Tables

Table No.	Title	Page No.
01	The weighted value and rating point for the range of environmental	
	parameters for mussel farming based on FIGIS (2005), Saxby (2002)	16
	Hickman (1992), Aypa (1990), Lovatelli (1990), Sivalingam (1977)	
02	Recommendation for site evaluation	16
03	Water quality parameters (min-max) of five stations in Naf River	27
04	Water quality parameters (min-max) in Naf River Estuary	28
05	Phytoplankton composition in Naf River estuarine region	33
06	Zooplankton composition in Naf River during the study	36
07	Site suitability rating system for Naf River, Cox's Bazar	37
08	Monthly abundance of Phytoplankton composition in Naf River	49
09	Monthly abundance of Zooplankton composition in Naf River	50

List of Figures

Figure No.	Title	Page No.
01	External view of green mussel (P. viridis)	04
02	Sampling location of Naf River	11
03	Temperature variation of the Naf River	18
04	Transparency fluctuation at Naf River Estuary	19
05	Turbidity fluctuation of the Naf River	20
06	pH fluctuation of the Naf River estuarine region	20
07	DO fluctuation of the Naf River Estuary	21
08	Salinity fluctuation of the Naf River	22
09	Depth fluctuation of the Naf River	22
10	Alkalinity fluctuation of the Naf River	23
11	Nitrate fluctuation of the Naf River	23
12	Nitrite fluctuation of the Naf River	24
13	Phosphate fluctuation of the Naf River	25
14	Ammonia fluctuation of the Naf River	25
15	Ammonium fluctuation of the Naf River Estuary	26
16	Chlorophyll-a fluctuation of the Naf River	27
17	Graphical representation of monthly variation of Bacillariophyceae	e 30
	at Naf River estuary	
18	Graphical representation of monthly variation of Chlorophyceae a	t 31
	Naf River estuarine region	
19	Graphical representation of monthly variation of Dinophyceae at	31
	Naf River estuarine region	
20	Graphical representation of monthly variation of Pyrrophyceae at	32
	Naf River	
21	Graphical representation of monthly variation of total phytoplankto	on 32
	at Naf River region	
22	Graphical representation of monthly variation of Zooplankton at	35
	Naf riverine area	
23	Nitrite test of sample	53
24	Nitrate test of sample	53

25	Ammonia test of sample	54
26	Ammonium test of sample	54
27	Phosphate test of sample	55
28	Chlorophyll-a test	55
29	Alkalinity test of sample	56
30	Filtration of sample water	56

List of Appendices

Appendix No.	Title	Page No.
Appendix I	Table of Phytoplankton abundance	49
Appendix II	Table of Zooplankton abundance	50
Appendix III	Some observed plankton under microscope	52-52
Appendix IV	Materials and Methodology's picture in laboratory	53-56
Appendix V	Some picture of field work	57

List of Abbreviations

DO	-	Dissolve Oxygen
NO ₂	-	Nitrite
NO ₃	-	Nitrate
PO ₄	-	Phosphate
NH ₄	-	Ammonia
mL	-	Milliliter
m	-	Miter
mg	-	Milligram
ppt	-	Parts Per Thousand
mg/L	-	Milligram Per Liter
°C	-	Degree Celsius
μg/L	-	Microgram Per Liter
m/s	-	Minute Per Second
<	-	Less than
>	-	Greater than
e.g	-	Example
et al.	-	And his associates
etc.	-	Et cetera
%	-	Percentage
ppm	-	Parts Per Million
ft	-	Feet
cm	-	Centimeter
NTU	-	Nephelometric Turbidity Unit
Min-max	-	Minimum-Maximum
St	-	Station
EPA	-	Ecosapentaenoic Acid
DHA	-	Docosahexaenoic Acid
Sig.	-	Significance
NS	-	No Significance difference
Ref.	-	Reference
MS	-	Master of Science

ABSTRACT

Green mussel (Perna viridis) is an important source of affordable animal protein for coastal communities. The suitability of the environment influence the success and sustainability of this green mussel culture technic. The study was carried out to evaluate the possible aspect to culture Perna viridis in Naf River, Teknaf, Cox's Bazar. In this study, site suitability of Naf River for green mussel farming was evaluate based on the month wise variations of physicochemical water quality parameters, and as well as the quantitative and qualitative abundance of plankton community from March 2018 to September 2018. Five stations were selected chronologically from downstream to upstream maintaining specific interval. The result showed that most of the water quality parameters were considered as suitable for green mussel culture. Salinity was fluctuated from 8 to 30 ppt during this period which was the major issue for green mussel culture. In Naf River, a total number of 29 genera of phytoplankton and 11 genera of zooplankton were identified, and their abundance varied from 12.27×10^3 to 126.67×10^3 cells/L depending on the months and stations. The class Bacillariophyceae dominated among the phytoplankton community with 62.05% of the total plankton count. After analyzing all the water quality parameter, qualitative and quantitative abundance of plankton, the selected stations exhibited site suitability for green mussel culture. In conclusion, the stations of Naf River are capable and moderately suitable for green mussel culture. This research will help to take initiative on proper management strategy to evaluate the aspect of P. viridis culture and guide the future research as baseline studies in this aspect.

Key words: *Perna viridis*, physico-chemical variations, plankton abundance, Site suitability, suitability rating