

Morphometric Variation of Hilsha Shad (*Tenualosa ilisha*) from Different Aquatic Population of Bangladesh

Barun Kanti Roy

Roll No.: 0118/06 Registration No.: 0587 Session: 2018-2019

A thesis submitted in the partial fulfillment of the requirements for the degree of

Master of Science in Marine Bio-resource Science

Department of Marine Bioresource Science Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram 4225, Bangladesh

JUNE 2019

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

(Barun Kanti Roy)

Morphometric Variation of Hilsha Shad (*Tenualosa ilisha*) from Different Aquatic Population of Bangladesh

Barun Kanti Roy

Roll No.: 0118/06 Registration No.: 0587 Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made.

(Avijit Talukder) Supervisor (Sk. Istiaque Ahmed) Co-supervisor

(Avijit Talukder) Chairman of the Examination Committee

Department of Marine Bioresource Science Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram 4225, Bangladesh

JUNE 2019

Acknowledgements

I am grateful to Almighty God who blessed me with courage, strength and patience to complete my research work. Besides, I am also grateful to "Department of Marine Bio-resource Science" of "Faculty of Fisheries" at "Chattogram Veterinary and Animal Sciences University", as I have got enough support from them throughout my study.

Then I would like to express my heartiest gratitude and sincere appreciation to my honorable supervisor **Avijit Talukder**, Assistant Professor and Head, Department of Marine Bio-resource Science, CVASU for his guidance, scholastic advice, useful comment and supervision.

Heartfelt thanks to my co-supervisor **Sk. Istiaque Ahmed**, Assistant Professor, Department of the Fisheries Resources Management for his special guideline.

I am greatly indebted and very glad to express my sincere appreciation and profound respect to my honorable teacher **Dr. Md Asaduzzaman**, Assistant Professor, Department of Marine Bio-resource Science, CVASU for his valuable advice, guidance, suggestions and inspiration during the research work.

I sincerely express deepest sense of gratitude and indebtedness to our honorable Vicechancellor **Prof. Dr. Goutam Buddha Das** and **Prof. Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU for their supportive administrative coordination to fulfill my research.

I am also acknowledging the Lab Assistant, Technicians and supporting staffs of Oceanography lab, faculty of Fisheries, Chittagong Veterinary and Animal Sciences University for their help.

Finally, I am forever indebted to my beloved parents for their patience and encouragement. I am also thankful to all my classmates for their friendly co-operation.

Table of Content

Chapter Name	Торіс	Page No.	
	Title Page	Ι	
	Authorization	II	
	Signatures Page	III	
	Acknowledgements	IV	
	Table of Contents	V-VI	
	List of Tables	VII	
	List of Figures	VIII	
	List of Appendices	IX	
	Abbreviations and Symbols	X	
	Abstract	XI	
Chapter One	Introduction	1-2	
	1.1 Objectives of the research	2	
Chapter Two	Review of Literature	3-6	
Chapter Three	Materials and Methods	7-11	
	3.1 Collection of samples	7	
	3.2 Measurement of morphometric characteristics	8-10	
	3.3 Statistical analysis	10-11	
Chapter Four	Results	12-20	
	4.1 Analysis of Morphometric and Landmark		
	Distance Measurements	12	
	4.2 Analysis of R-statistical Packages	13	
	4.3 Wilks' Lambda Test	13-14	
	4.4 Discriminant Function Analysis (DFA)	14-15	
	4.5 Original and Cross Validated Count	15-16	
	4.6 Sample Centroids Analysis	16	
	4.7 Biplot Analysis	17-18	
	4.8 Contribution of Morphometric Variables	18-19	

	4.9 Dendrogram Based Analysis	19-20
Chapter Five	Discussion	21-24
	Conclusion	25
	Recommendations and Future Perspectives	26
	References	27-34
	Appendices	35-43
	Brief Biography of the Author	44

List of Tables

Table No.	Title	Page No.
Table 01	Collection of Hilsha fish samples from the major migratory	7
	routes including sea, estuary and different rivers of Bangladesh	
Table 02	General morphometric characters and their descriptions used for	9-10
	the analysis	
Table 03	The mean \pm SD of the standardized six morphometric	12
	measurements and twenty-two truss distances (in cm) of	
	different Hilsha shad population	
Table 04	Eigenvalues, percentage of variance and percentage of	13
	cumulative variance of morphometric measurements and truss	
	distances of Hilsha shad populations based on the canonical	
	discriminant function analysis by R-statistical packages	
Table 05	Wilks' lambda test of different morphometric measurements	14
	and truss distances for verifying differences among different	
	populations of Hilsha shad	
Table 06	Pooled within-group correlations between discriminating	14
	variables and standardized canonical discriminant functions of	
	different morphometric measurements and truss distances of	
	Hilsha shad populations based on discriminant function analysis	
Table 07	Percentage of specimens classified in each group and after	15
	cross-validation for different morphometric measurement and	
	truss distances of Hilsha shad population based on the	
	discriminant function analysis	

List of Figures

Figure No.	Title	Page No.
Figure 01	Map of Bangladesh showing sampling sites of Hilsha shad	08
Figure 02	Morphometric characters and locations of the 12 landmarks	09
	points used for the shape analysis of anadromous Hilsha shad	
	stock variations	
Figure 03	Sample centroids of the discriminant function scores based on	16
	the seven morphometric measurement (A), twenty-two truss	
	distances (B) and combining seven morphometric	
	measurements and twenty-two truss distances (C) of different	
	Hilsha shad population	
Figure 04	Biplot of the first two principle components of the	17
	morphometric variables and different Hilsha shad population	
	for seven morphometric measurement (A, B), twenty-two truss	
	distances (C, D) and combining seven morphometric	
	measurements and twenty-two truss distances (E, F) by	
	principal component analysis using R-statistical package	
Figure 05	List of the major morphometric variables contributed to the first	19
	principal component (left image) and second principal	
	component (right image) of different Hilsha shad population	
Figure 06	Dendrogram based on seven morphometric measurements and	20
	twenty-two landmark distances of the different anadromous	

Hilsha shad population

LIST OF APPENDICES

Appendix	Title	Page
No.		No.
Appendix I	Comparative studies on <i>T. ilisha</i> collected from six (06) different habitats for morphometric characters and truss measurements	35-36
Appendix II	Comparison among the population based on morphometric characters and their contribution in differences	37-43

Abbreviations and Symbols

Abbreviations		Full
G	:	Gram
SD	:	Standard Deviation
%	:	Percentage
Cm	:	Centimeter
SPSS	:	Statistical Package for Social Science
DM	:	Dimension
GDP	:	Gross Domestic Product
DoF	:	Department of Fisheries
FAO	:	Food and Agriculture Organization
0	:	Degree
PCA	:	Principal Component Analysis
PC	:	Principal Component
DFA	:	Discriminant Function Analysis
DF	:	Discriminant Function
sp.	:	Species
>	:	Greater than
<	:	Smaller than
et al.	:	Associates

Abstract

The morphometric character plays an important role in management of Hilsha shad in the aquatic habitat of Bangladesh. Fish samples were collected from 6 regions as Kuakata (Sea), Meghna Estuary (ME), Meghna River (MR), Lower Padma River (LPR), Upper Padma River (UPR), Upper Jamuna River (UJR) of Bangladesh. Landmark-based morphometric characters were examined to evaluate the population status and variation among these six regions. The observed characters suggest that there are morphologic differences among the Hilsha fish due to their geographical distribution, availability of food, difference in various water quality parameters, and also for their variation in habitats. The discriminant functions analysis (DFA) showed an overlapped in all the stocks of T. ilisha. Discriminant functions 1, 2, 3, 4 and 5 accounted for 47.3%, 24.6%, 12.7%, 9.1% and 6.3% of the variation which indicates variation among the stocks. The principal component 1 to 5 accounted for 27.16%, 20.08%, 13.17%, 8.136% and 6.616% of variation. Wilk's Lambda test also indicates highly significant characteristics among stock. The discriminant function analysis showed that 93.05% original grouped populations correctly classify their populations whereas in the cross-validation test exhibited 86.23% correctly classify their populations. Discriminant function scores of sample centroids; MR was isolated in truss distance and combination of all morphometric characters. The Biplot analysis showed that the maximum diversified populations were UPR, Sea and MR and much variation has seen in HL and D3-9 for morphometric and truss distances. For the first and second principal component maximum contribution in variance were in D2-9, D3-9 and HL. Dendogram analysis also displayed that the individual Hilsha population of ME was the greater homogeneity with LPR and UJR and UPR and MR showed the higher heterogeneity. In future this research finding will be help policy makers to initiate future policy and researchers for the management and conservation of Hilsha population. Nevertheless this research requires further effort in particular, the integration of molecular methods which may help to realize on the taxonomy of Hilsha.

Key words: Biplot, dendrogram, discriminant function, morphometric measurements, *Tenualosa ilisha*, truss distance.