Acknowledgements

At first, I want to express my deepest gratitude to almighty Allah for giving me strength and opportunity to do my research and complete it successfully for the degree of Master of Science (MS) in Medicine under the department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University (CVASU), Bangladesh.

I sincerely acknowledge the contribution of Professor Dr. Mizanur Rahman, Medicine and Surgery, CVASU for his guidance and continuous support during the whole study period. His critical advice, scholastic guidance, inspiration and well thought suggestions during my study period. I always needed his expert opinion as he has ample experience on mastitis study.

I would like to express the first and foremost heartiest appreciation, deepest sense of gratitude and best regards to my supervisor Prof. Dr. Pankaj Chakraborty, Department of Medicine and Surgery, CVASU. His cordial supervision and important suggestions helped me a lot to complete this thesis. It was my pleasure and great experience to work with him under his supervision and with.

I would like to convey my very special gratitude to my co-supervisor A/Prof. Dr. Ylva Persson, Associate State Veterinarian, SVA, Sweden, who was always first to respond. She always managed time to correct my thesis with valuable comments. She was the most active member of my supervisory team.

Special thanks to Professor Dr. Md. Ahasanul Hoque, Department of Medicine and Surgery, CVASU for data analysis and interpretation of the findings and writing up without which it would be difficult to complete this work.

Thanks to Dr. Gerrit Koop, Assistant Professor, Department of Farm Animal Health, Utrecht University (UU) for his critical advice, scholastic guidance, inspiration and well thought suggestions during study designing and my study period.

I would like to thank Dr. Shahana Ahmed, PhD student, University of Copenhagen for sharing thoughts about total bacterial count and spot plate technique.

I want to express gratitude to Dr. Shuvo Singha, Joint doctorate fellow, Università degli Studi di Milano for his cordial advice during thesis writing and my lab work. It was great to share ideas with him on several occasions.

This MS study was a part of the project, "Development of udder health control program in dairy cows in Bangladesh" funded by Swedish Research Council and operated jointly by Chattogram Veterinary and Animal Sciences University (CVASU), Bangladesh, National Veterinary Institute (SVA) Sweden, Utrecht University and Wageningen University and Research, The Netherlands. The collaboration gave my study an international platform which was a memorable opportunity for me to acknowledge.

I would like to thank Dr. David Ericsson, Swedish University of Agricultural Science for helping during lab work through MALDI-ToF as well as MIC. Special thanks to Dr. Salma Chowdhury, Dr. Pronesh Dutta, Dr. Trisha Ray, Dr. Nazifa Alam, Dr. Pran Gopal Rudra for their sensational support during the study period.

I want to acknowledge the authority and all the technicians of Poultry Research and Training Centre (PRTC) for their cordial help during my research work.

Finally, I express my deepest sense of gratitude to my parents and my brother for their spontaneous blessings, encouragement to do my work efficiently.

The Author

Acknowledgement		
Table of Contents	II-VII	
List of Figures	VIII	
List of Tables	VII	
List of Abbreviations	VIII	
Abstract	IX	
Chapter-1: Introduction	1	
1.1. Objectives	4	
Chapter-2: Review of Literature	5-18	
2.1. Dairy Farming in Bangladesh	5	
2.1.1. Development of dairy sector	5	
2.1.2. Dairy cattle rearing and milk production	5	
2.1.3. Dairy farming and employment opportunities	7	
2.1.4. Milk quality in Chattogram	7	
2.2. Bulk milk analysis	8	
2.2.1. Importance of bulk milk analysis	8	
2.2.2. Available screening tests for Bulk milk analysis	9	
2.2.2.1. Identification of Bacteria	9	
2.2.2.1.1. Bacterial culture	10	
2.2.2.1.1.1. Polymerase chain reaction	10	
2.2.2.1.1.2. Matrix assisted laser desorption/ ionization	10	
2.2.2.2. Somatic cell count	11	
2.3. Presence of <i>S. aureus</i> in Bulk milk	12	
2.3.1. Sources of <i>S. aureus</i> in bulk milk	12	

Table of Contents

2.3.2. Effect of <i>Staphylococcus aureus</i> on human and animals	12
2.3.3. Emergence of MRSA	
2.3.4. MRSA in animal and personnel working with animal	12
2.3.5. Public health concern of MRSA	13
2.4. Somatic cell count in bulk milk	13
2.4.1. Factors associated with elevated somatic cell count in bulk milk	13
2.4.1.1. Physiological factors	13
2.4.1.2. Poor udder health	13
2.4.1.3. Management	14
2.4.1.4. Technical aspect	14
2.4.1.5. Relationship between bulk milk somatic cell count and mastitis preval	lence14
2.4.2. Effects of high bulk milk somatic cell count	15
2.4.2.1. Milk production	15
2.4.2.2. Milk composition and quality	15
2.4.3. Somatic cell count and monitoring udder health	16
2.4.4. Guidelines for monitoring bulk milk somatic cell count	16
2.4.4.1. Entry into the milking herd	16
2.4.4.2. New infections	16
2.4.4.3. Cure	17
2.4.44. Culling	17
2.5. Bulk Milk analysis in Bangladesh	17
2.6. Conclusions	18
Chapter-3: Materials and Methods	19-24
3.1. Experimental design	19
3.2. Sample collection, preservation and transportation	19
3.3. Bulk milk somatic cell count	19

3.4. Bacteriological examination of bulk milk	19
3.5. Preservation of isolates	.21
3.6. Matrix associated laser desorption/ ionization- time of flight	.22
3.7. Minimum inhibitory concentration	.22
3.8. Statistical analysis	.22
3.8.1. Descriptive statistics	22
3.8.2. Risk factors analysis	23
Chapter-4: Results24-	30
4.1. Dairy cattle herd characteristics	25
4.2. Assessment of bacterial contamination in bulk milk	25
4.3. Correlation among the variables	26
4.4. Prevalence of pathogens isolated from bulk milk	27
4.5. Minimum inhibitory concentration determination of selected <i>S. aureus</i>	27
4.6. Risk factors analysis	.29
4.6.1. Univariate analysis	29
4.6.2. Multivariable linear regression model for bulk milk somatic cell count	.30
Chapter-5: Discussion	35
5.1. Farm characteristics	31
5.2. Somatic cell count and bacterial contamination in bulk milk	.31
5.3. Correlation with bulk milk somatic cell count with different bacterial counts	.32
5.4. Prevalence of <i>S. aureus</i> and MRSA	33
5.5. Risk factors associated with bulk milk somatic cell count	.33
5.6. Limitation of the study	34

5.7. Conclusions	35
Chapter-6: Recommendations and Further Directions	
References	
Appendix-I	
Appendix-II	58
Appendix-III	59-60
Appendix-IV	61

List of Figures

Figure 1: Major milk producing areas in Bangladesh (Talukder et al, 2019)6
Figure 2: Milk production trends in Bangladesh in recent years (Annual Report, Ministry of
Fisheries and Livestock), 20197

List of Tables

Table 4.7. Outputs of multivariable linear regression between the farm level factors and mean bulk milk somatic cell count of lactating cows during the period of 6 months (n=24 farms).....43

List of Abbreviations

Abbreviations	Elaborations
%	Percentages
2	Greater than or equal to
	Less than or equal to
95% CI	95% Confidence Interval
ANOVA	Analysis of variance
BA	Blood agar
BFDA	Bangladesh dairy farmers association
BMSCC	Bulk milk somatic cell count
BHB	Brain Heart Infusion Broth
CFU	Colony forming unit
СМ	Clinical mastitis
CVASU	Chattogram Veterinary and Animal Sciences University
DLS	Department of livestock services
ES	Environmental streptococci
et al.,	and others
GDP	Gross domestic product
IDF	International Dairy Federation
IMI	Intramammary infection
MAC	MacConkey agar
MALDI-TOF	Matrix assisted laser desorption/ionization time of flight
MIC	Minimum inhibitory concentration
MR test	Methyl Red test
MRSA	Methicillin resistant Staphylococcus aureus
MSA	Mannitol salt agar
NAS	Non-aureus staphylococcus
NMC	National mastitis council
OR	Odd ratios
PCR	Polymerase chain reaction
PRM	Packaged raw milk
PRTC	Poultry Research and Training Centre
SCC	Somatic cell count
SCM	Sub-clinical mastitis
SVA	National Veterinary Institute, Sweden
TBC	Total bacterial count
TCC	Total coliform count
TESC	Total environmental streptococcal count
TSC	Total staphylococcal count
VP test	Voges-Proskauer test
μg	microgram

Abstract

Dairying is an important source of subsidiary income generation for farmers in Chattogram. At present, there is an enormous development in the dairy sector. But milk quality issues are a concern among milk consumers and producers who collect milk from Chattogram. Although, measures have been taken to increase the quality of milk has not been thoroughly evaluated in this area.

A cohort study was conducted on 24 randomly selected commercial dairy farms with 72 samples (3 samples from each of 24 farms with 2 months interval) in Chattogram for six months (from May to October 2018) and data were recorded using validated questionnaire. The aims of the study were to determine the hygienic quality and zoonotic hazard of bulk milk by measuring somatic cell count (SCC) and total bacterial count (TBC), determination of prevalence of *Staphylococcus (S.) aureus* and the proportion of MRSA isolated from *S. aureus*, and by assessing the relation between bulk milk somatic cell count (BMSCC) and other farm factors.

The BMSCC varied from 291,000 - 1,156,670 cells/mL and TBC varied from 400-1,890,567 CFU /mL of milk during three repeated counts. The prevalence of *S. aureus* was 16.7% (95% CI: 4.7 to 37.2%) and methicillin resistant *S. aureus* (MRSA) was 8.3% (95% CI: 1 to 27%). Two isolates were MRSA and found resistant against penicillin, oxacillin, cefoxitin, gentamicin and tetracycline. Negative correlation (r=-0.71; p=0.07) was estimated for total staphylococcal count (TSC) vs. BMSCC at Pearson's correlation. In a linear regression model, own stock as replacement was positively correlated (p=0.09) with lower level of BMSCC. This study suggests that dry floor condition and introducing own stock at dairy herds can reduce bulk milk somatic cell count. Findings of this study shows that the bulk milk at Chattogram are contaminated with multidrug resistant *S. aureus* which can be a potential risk of MRSA infection which is a great concern for both human and animal health.

Keywords:

Bulk milk somatic cell count, quality of milk, total bacterial count, methicillin resistant *Staphylococcus aureus*.