

DEVELOPMENT OF COMMUNITY BASED AQUACULTURE MODEL IN THE HILLY AREA OF BANGLADESH

Saifuddin Rana

Roll No.: 0119/03

Registration No.: 721

Session: 2019-2020

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

Department of Fisheries Resource Management
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

JUNE 2020

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Saifuddin Rana

JUNE 2020

DEVELOPMENT OF COMMUNITY BASED AQUACULTURE MODEL IN THE HILLY AREA OF BANGLADESH

Saifuddin Rana

Roll No.: 0119/03

Registration No.: 721

Session: 2019-2020

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Dr. Sk. Ahmad Al Nahid Sk. Istiaque Ahmed
Supervisor Co-supervisor

Dr. Sk. Ahmad Al Nahid Chairman of the Examination Committee

Department of Fisheries Resource Management
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

JUNE 2020

ACKNOWLEDGEMENTS

All the praises and thanks to Allah, the Almighty, most gracious, most merciful, most benign who has enabled himto pursue the study in fisheries science successfully and to submit the thesis for the degree of Master of Science in Fisheries Resource Management and also pay gratitude to the Almighty for enabling and giving strengths to complete research work as well as thesis within due course of time.

The author expresses his gratitude and indebtedness to Vice-Chancellor, Professor Dr. Goutam Buddha Das and Dean, Professor Dr. Mohammad Nurul Absar Khan from the bottom of his heart for their immense administrative support to complete his research work.

The author expresses hisdeepest sense of gratitude and sincere appreciation to his honorable teacher and research supervisor, Dr. Sk Ahmad Al Nahid, Associate Professor and Head, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogramfor his unfailing support, authoritative guidance, constructive criticism, advice and continuous motivation. It would never have been possible for himto take this work to completion without his incredible support and continuous encouragement. His dynamism, vision and confidence inspired him and gave himconfidence and strength.

The author also sincerely expresses his gratitude to his co-supervisor,Sk. Istiaque Ahmed, Assistant Professor, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram for hisvaluable guidance, intellectual suggestions, knowledge, patience, and time to teach him to be more confident person that he is going to use in work world.

The author expresses his thanks to Mrs. Tasnuba Hasin, Assistant Professor, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram for her valuable and constructive suggestions during the research work.

The author expresses his sincere appreciation to Mrs. Shahida Afrine Shimul, Assistant Professor, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram for her constructive guidelines and valuable suggestions in the research content writing.

The author expresses his cordial thanks to Md. Mezanur Rahman, Fish Inspection and Quality Control officer and Quality Manager, Quality Control Laboratory, Department of Fisheries, Chattogram for his great support in the laboratory analysis of the research work.

The author is extremely glad to take opportunity to express his heartfelt thanks and gratitude all of his respected teachers of the Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram for their valuable teaching and continuous encouragement during the study period.

The author expresses his thanks to the lab technician Bokhteyar Hossain, and all the staff members of the Aquatic Ecology laboratory for their cooperation during laboratory analysis as well.

It's his fortune to gratefully acknowledge the support of his friends Md. Nazmul Hasan, Md. Arifur Rahman, Md. Maksudur Rahman, Md. Abu Naeem and Abdulla Al Bari fortheir supportthroughout the research tenure.

Finally the author expresses his heartfelt gratitude to his beloved parents Mr. Kamal Uddin and Mrs. Amena Begum for selfless love, blessings, care, dedicated efforts, valuable prayers, continuous support during the academic life.

The Author

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
			NO.	
	AUTHOR	IZATION	ii	
	ACKNOWLEDGEMENTS		iv-v	
	LIST OF TABLES		ix	
	LIST OF	FIGURES	X	
	LIST OF	OF PLATES		
	LIST OF	OF APPENDICES		
	LIST OF	T OF ABBREVIATIONS		
	ABSTRAC	CT	XV	
1	INTRODU	JCTION	01-03	
	1.1 Objecti	ves	03	
	1.2 Scopes	of the study	03	
2	REVIEW	OF LITERATURE	04-08	
	2.1 Fisheri	es and Aquaculture in Bangladesh	04	
	2.2 Existin	g Aquaculture system and model in Bangladesh	05	
	2.3 Aquacı	ulture in the hill	05	
	2.4 Scope	and challenges of aquaculture in the hilly area	06	
	2.5 Feasibi	sibility of integrated aquaculture and polyculture in the		
	hill			
	2.6 Comm	unity-based Fisheries Management (CBFM) and	07	
	Comm	Community Based Aquaculture (CBA)		
	2.7 Prospec	cts and Constraints of CBFM and CBA	07	
	2.8 Method	ds of CBA model formulation	08	
3	MATERIA	ALS AND METHODS	09-15	
	3.1 Study A	Area	09	
	3.2 Selection	on of fish farms and farmers	09	
	3.3 Analys	is of the fish farming system	11	
	3.3.1 Field	survey	11	
	3.3.1.1	Selection of survey techniques and preparation of	11	
		the questionnaire		

	3.3.1.2	Farmers' interview and field visit	11
	3.3.1.3	Focus group discussion	11
	3.3.1.4	Stakeholder's analysis	11
	3.3.2	Laboratory analysis	11
	3.3.2.1	Sample collection	12
	3.3.2.2	Determination of water and sediment quality	12
		parameters	
	3.3.2.2.1	Determination of the water temperature	12
	3.3.2.2.2	Determination of the water pH	12
	3.3.2.2.3	Determination of the dissolved oxygen (DO)	12
	3.3.2.2.4	Determination of the ammonia	12
	3.3.2.2.5	Determination of the transparency	12
	3.3.2.2.6	Determination of the iron	12
	3.3.2.2.7	Determination of the total suspended solids (TSS)	13
	3.3.2.2.8	Determination of phytoplankton abundance	13
	3.3.2.2.9	Determination of sediment organic carbonand	14
		organic matter	
	3.3.2.2.10	Determination of sediment iron content	14
	3.3.2.3	Identification of hazardous substances	14
	3.4 Analysi	s and visualization of collected data	14
	3.5 Determ	ination of the problems and prospects of aquaculture	15
	3.6 Formula	ation of community based aquaculture model	15
4	RESULTS		23-35
	4.1 Diversi	ty of occupation	23
	4.2 Owners	hip, types of waterbody, area and farming type	23
	4.3 Importa	ant aspects of fish farming	24
	4.4 Fish cul	lture methods	25
	4.5 Culture	species	25
	4.6 Types a	and sources of seed	26
	4.7 Costing	of seed at source and transportation	26
	4.8 Average	e transportation cost and mortalities for fish seed	26
	4.9 Costs as	ssociated with feeding	27

	4.10 Total cost analysis	28
	4.11 Cost, production and revenue analysis	28
	4.12 Profit scenario based on farming types	30
	4.13 Water and sediment quality parameters	31
	4.14 Comparison of water quality and sediment parameters	32
	4.15 Sediment iron content	33
	4.16 Presence hazardous components	33
	4.17 Problems and prospects of aquaculture	33
	4.18 SWOT analysis for the aquaculture expansion	35
	4.19 Community-based aquaculture model for the target area	35
5	DISCUSSION	37-42
	5.1 Diversity of occupation	37
	5.2 Ownership, types of waterbody, area and farming type	37
	5.3 Important aspects related to fish farming	37
	5.4 Fish culture methods	38
	5.5 Culture species	38
	5.6 Types and sources of seed	38
	5.7 Seed transportation and mortalities	39
	5.8 Total cost analysis	39
	5.9 Production and income	39
	5.10 Water and sediment quality parameters	40
	5.11 Presence of hazardous components	41
	5.12 Prospects identified	41
	5.13 Problems identified	41
	5.14 Community based aquaculture model	42
6	CONCLUSION	45
7	RECOMMENDATION AND FUTURE PERSPECTIVES	46
	REFERENCES	47-54
	APPENDICES	55-69
	BRIEF BIOGRAPHY OF THE AUTHOR	70

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1.	Water and sediment quality parameters of non-poultry fish farms	31
2.	Water and sediment quality parameters of	32
3.	poultry fish farms Comparison of water quality and sediment	32
4.	parameters SWOT analysis for the aquaculture expansion	35

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		NO.
1.	Study area	09
2.	Map of selected farms	10
3.	Diversity of occupation	23
4.	Ownership, types of waterbody, area and farming type	24
5.	Important aspects of fish farming	24
6.	Identified culture methods	25
7.	Identified culture species	25
8.	Costing of seed at source and transportation	26
9.	Average transportation cost and mortalities for fish seed	27
10.	Feed cost analysis	27
11.	Comparison of floating and sinking feed	28
12.	Comparison of the different types of costing among the farms	28
13.	Costing of the farms per unit area	29
14.	Production per unit area among the selected farms	29
15.	Revenue per unit area among the selected farms	30
16.	Profit scenario based on farming types	30
17.	Prospects ranking	33
18.	Problem ranking	34
19.	Community-based Aquaculture model	35

LIST OF PLATES

PLATES	TITLE	PAGE
NO.		NO.
1.	Farmers interview	16
2.	Farm Visit	16
3.	Creek and pond	17
4.	Poultry cum fish farm	17
5.	Vegetable culture on the pond dyke	18
6.	Fish Seed collection from nursery pond	18
7.	Focus group discussion	18
8.	Fish market visit	19
9.	Meeting with upazila fisheries officer of Matiranga	19
10.	Water quality testing in the field	20
11.	Sample collection	21
12.	TSS determination	21
13.	Phytoplankton cell count and identification	22
14.	Sediment organic carbon determination	22

LIST OF APPENDICES

APPENDIX	TITLE	PAGE NO.
NO.		
A.	Pre-constructed questionnaire for the survey	55
В.	Surveyed farmer list	58
C.	Focus group discussion	59
D.	Iron content of sediment sample	60
E.	Chemical test report	61
F.	Seed associated cost/year	65
G.	Feed associated cost/year	66
Н.	Culture techniques and species	67
I.	Cost and profit/year	68
J.	Water quality Parameters	69

LIST OF ABBREVIATIONS

MT Metric Ton

CBFM Community Based Fisheries Management

CBO Community Based Organization

CBA Community Based Aquaculture

USD United States Dollar

GDP Gross Domestic Product

DoF Department of Fisheries

FAO Food and Agriculture Organization

Ha Hectare

IPM Integrated Pest Management

NGO Non-Governmental Organization

CBFC Community Based Fish Culture

Kg Kilogram

g Gram

mg Milligram

PRA Participatory Rural Appraisal

UFO Upazila Fisheries Officer

DO Dissolved Oxygen

TSS Total Suspended Solids

TDS Total Dissolved Solids

mL Milliliter

FIQC Fish Inspection and Quality Control

BCSIR Bangladesh Council of Scientific and Industrial Research

GIS Geographic Information System

SPSS Statistical Package for the Social Sciences

GPS Global Positioning System

BDT Bangladeshi Taka

°C Degree Celcius

cm Centimeter

Km Kilometer

μm Micrometer

ppm Parts per million

FGD Focus Group Discussion

SWOT Strengths, Weaknesses, Opportunities, and Threats

SIS Small Indigenous Species

SV Sample Volume

MEq Milli equivalent

% Percent

L Liter

ABSTRACT

Aquaculture is a growing industry in Bangladesh that contributing to overall fish production and economic growth. Expansion of aquaculture activities in hilly regions is necessary for improving the livelihood status of people, and engaging women and youths in fish farming. There are various problems and challenges in developing sustainable aquaculture in the hilly regions. The study was conducted at Matiranga Upazila, Bandarban district, one of the major hill tract regions of Bangladesh to identify existing problems of aquaculture and finding applicable solutions. The study aimed to develop a community based aquaculture model (CBAM) based on the analysis of existing problems and prospects of aquaculture in the study area. The study was conducted through survey and laboratory analysis in order to examine existing practiced farming strategy. Different types of PRA tools including focus group discussion (FGD), field visit, and farmers' interview wereused to collect information on the existing farming strategy, problems, and prospects of aquaculture. Eleven species of fish were identified as culture species and polyculture (60%) was the most practiced methodof aquaculture in the study area. Transportation cost for seeds from remote sources was high (11% of total seed cost) and average mortality was recorded 7.2% for fry, 2.8% for fingerlings from the selected fish farms. The cost associated with feed was the major cost (58.4%) in aquaculture. Cost and revenue per decimal varied from 311 to 3,528 BDT and 162 to 2,097 BDT respectively. Utilization of vacant lake, youth and women engagement, integrated aquaculture, people desire to engage in aquaculture, and available human resources were found as major prospects. The major problems were lack of hatchery, excessive feed cost, lack of stakeholder linkage, low fertility of the soil, and lack of proper knowledge, guidelines, and consultancy. A community based aquaculture model (CBAM) was developed based on the findings. The CBAM will help to improve the livelihood and income of the people of the study area and may contribute to sustainable aquaculture development in Bangladesh.

Key words: Aquaculture, Hilly Area, Community Based Aquaculture Model