Chapter 4

Results

Physico-chemicals parameters of water were tested from three sampling sites and all of parameters were estimated individually.

4.1 Physical parameters

4.1.1 Temperature

Air temperature were same in all sampling sites because sample sites more or less 200 m distant from each other, as all samples were done from same lake and it has not a big area that air temperature may vary. Temperature ranges from $28^{\circ} \mathrm{C}$ to $31.4^{\circ} \mathrm{C}$. Highest temperature was recorded in July and average temperature was $29.34^{\circ} \mathrm{C}$. Water temperature ranges from $25.7^{\circ} \mathrm{C}$ to $29.3^{\circ} \mathrm{C}, 26.2^{\circ} \mathrm{C}$ to $29^{\circ} \mathrm{C}$ and $26.3^{\circ} \mathrm{C}$ to $29.5^{\circ} \mathrm{C}$ from site S_{1}, S_{2} and S_{3} respectively. Highest temperature was recorded from site S_{3} in July and lowest temperature was recorded from site S_{1} in September. Average temperature was $27.76^{\circ} \mathrm{C}, 27.95^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ from site $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively.

Figure 1: Monthly variation of air temperature in Foy's Lake

Figure 2: Monthly variation of water temperature

4.1.2 Transparency

Water transparency varied spatially and temporally. It ranges from 66 cm to 110 cm , 68 cm to 110 cm and 67 cm to 111 cm in S_{1}, S_{2} and S_{3} respectively. The highest transparency was recorded from S_{3} in July and the lowest transparency was recorded from S_{1} in April. (Figure 3)

Figure 3: Monthly variation of water transparency

4.1.3 Water depth

As bottom of lake is not level or flat depth showed spatial variation and due to precipitation, it also showed seasonal variation. Depth ranges from 33.2 ft to $43 \mathrm{ft}, 27.8$ ft to 37.2 ft and 30 ft to 40 ft . S_{1} showed highest depth in August and September and S_{2} showed lowest depth in April.

Figure 4: Spatial and Monthly variation of water depth

4.2 Chemical parameters

4.2.1 Dissolve oxygen

Dissolve oxygen (DO) was recorded $7.3 \mathrm{mgl}^{-1}$ to $8.2 \mathrm{mgl}^{-1}$ in site $\mathrm{S}_{1}, 7.2 \mathrm{mgl}^{-1}$ to 8.2 mgl^{-1} from S_{2} and $7.3 \mathrm{mgl}^{-1}$ to $8.4 \mathrm{mgl}^{-1}$ from S_{3} respectively. Maximum DO was recorded $8.2 \mathrm{mgl}^{-1}$ and minimum DO was recorded $7.2 \mathrm{mgl}^{-1}$.

Figure 5: Monthly variation of dissolve oxygen

4.2.2 $\quad \mathbf{p H}$

Estimated value of pH ranges from 7.5 to $8.7,7.4$ to 8.57 and 7.5 to 8.6 in site $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. Highest pH was estimated from S_{1} in April and lowest pH was estimated from S_{2} in August.

Figure 6: Monthly variation of $\mathbf{p H}$

4.2.3 Total alkalinity

Total alkalinity ranges from $48.2 \mathrm{mg} / \mathrm{l}$ to $55.6 \mathrm{mg} / 1,49 \mathrm{mg} / \mathrm{l}$ to $55.5 \mathrm{mg} / \mathrm{l}$ and $49.2 \mathrm{mg} / \mathrm{l}$ to $56 \mathrm{mg} / \mathrm{l}$ in $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. Maximum alkalinity was estimated $56 \mathrm{mg} / \mathrm{l}$ from S_{3} in August and minimum alkalinity was estimated from S_{1} in April.

Total alkalinity $\left(\mathrm{mgl}^{-1}\right)$

Figure 7: Monthly variation of total alkalinity

4.2.4 Ammonia

Ammonia was ranged from $.1 \mathrm{mgl}^{-1}$ to $0.3 \mathrm{mgl}^{-1}, 0.1 \mathrm{mgl}^{-1}$ to $0.2 \mathrm{mgl}^{-1}$ and $0.11 \mathrm{mgl}^{-1}$ to $0.2 \mathrm{mgl}^{-1}$ from $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. Hight ammonia was recorded from S_{1} in April and lowest was recorded from S_{1} and S_{2} in Jun, July and August.

Figure 8: Monthly variation of ammonia

4.2.5 Free carbon dioxide (CO_{2})

The value of free carbon dioxide ranged from $3.3 \mathrm{mgl}^{-1}$ to $4.1 \mathrm{mgl}^{-1}, 3.7 \mathrm{mgl}^{-1}$ to $4.6 \mathrm{mgl}^{-}$ ${ }^{1}$ and $3.5 \mathrm{mgl}^{-1}$ to $4.6 \mathrm{mgl}^{-1}$ from $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. Maximum value was recorded from S_{2} and S_{3} which were in April and May and minimum value was recorded from S1 August.

Figure 9: Monthly variation of Carbon dioxide

4.2.6 Nitrate

Estimated value of nitrate ranged from $0.01 \mathrm{mgl}^{-1}$ to $0.08 \mathrm{mgl}^{-1}, 0.04 \mathrm{mgl}^{-1}$ to $0.07 \mathrm{mgl}^{-}$ ${ }^{1}, 0.07 \mathrm{mgl}^{-1}$ to $0.1 \mathrm{mgl}^{-1}$ from $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. Highest value was estimated from S_{3} in April and lowest value was estimated from S_{1} in July.

Figure 10: Monthly variation of nitrate

4.3 Primary productivity

4.3.1 Gross primary productivity

Value of gross primary productivity (GPP) ranged from $0.30 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.60 \mathrm{gCm}^{-3} \mathrm{~h}^{-}$ ${ }^{1}, 0.30 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.65 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ and $0.30 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.65 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ from $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. Highest gross primary productivity (GPP) was recorded from S_{2} and S_{3} in September. Lowest gross primary productivity was recorded from all three stations in April.

Figure 11: Comparative estimation of gross primary productivity

4.3.2 Net primary productivity

Net primary productivity (NPP) ranged from $0.25 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.45 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ in S_{1} and S_{2} and $0.24 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.40 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ all in S_{3}. The highest net productivity was estimated in S_{1} and S_{2} in September and lowest net productivity was estimated in S_{3} in June.

Figure 12: Monthly variation of net primary productivity

4.3.3 Community respiration

Community respiration ranged from $0.1 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.2 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}, 0.05 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to 0.18 $\mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ and $0.05 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ to $0.2 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ in $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} respectively. The lowest community respiration was estimated in S_{2} and S_{3} in August and the highest community respiration S_{1} in September.

Figure 13: Monthly variation of Community respiration

4.3.4 Seasonal variation of gross primary productivity

Average gross primary productivity was estimated $0.39 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}, 0.31 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ and $0.61 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ in pre monsoon, monsoon and post monsoon. The highest gross primary productivity was estimated in post monsoon and the lowest gross primary productivity was estimated in monsoon.

Figure 14: Seasonal variation of gross primary productivity

4.3.5 Seasonal variation of net primary productivity

Value of net primary was estimated $0.35 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}, 0.26 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ and $0.41 \mathrm{gCm}^{-3} \mathrm{~h}^{-1}$ in pre monsoon, monsoon and post monsoon. Highest net productivity was estimated in post monsoon and lowest net productivity was estimated in monsoon.

Figure 15: Seasonal variation of net primary productivity

4.4 Phytoplankton analysis

Phytoplankton population were counted and identified up to genus. Nine species of phytoplankton were identified which were under five classes namely Chlorophyceae, Bacillariophyceae, Cyanophyceae, Euglenophyaceae and Dinophyceae. The highest 4 species were identified under Chlorophyceae. Maximum eight species of phytoplankton were identified in May and July. The number of phytoplanktons were varied from 15 cell/L to 26 cell/L, 13 cell/L to $25 \mathrm{cell/L}$ and $14 \mathrm{cell/L}$ to 28 cell/L. The highest number of phytoplankton were counted from S_{3} in September and lowest number of phytoplankton were identified from S_{2} in July.

Figure 16: Monthly variation of phytoplankton number

Table 1: Presence of phytoplankton during study period

Class	Genus	Apr.	May	Jun.	Jul.	Aug.	Sep.
Bacillariophyceae	Cyclotella	+	+	+	+	+	
	Navicula		+	+	+		
	Chlorella	+	+	+	+	+	+
	Dictyosphaerium	+	+			+	+
	Westella botryoides		+	+	+	+	+
	Ulothrix	+	+	+	+		+
Euglenophyaceae	Euglena	+	+	+	+		+
Cyanophyceae	Gloeocapsa	+	+	+	+	+	+
	Aphanizomenon		+	+	+	+	+
Dinophyceae	Alexandrium	+				+	+
Total no. genus		$\mathbf{7}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{8}$

$\mathrm{N}: \mathrm{B}:(+)$ sign indicate the presence of plankton

4.4.1 Percentage of phytoplankton species in study area

Figure 17: Presence of phytoplankton species in study area

4.5 Zooplankton

Five species of zooplankton were identified namely Cyclops, Daphnia, Moina, Brachionus and Padina under classes copepod, Cladocera and rotifer.

Table 2: Presence of zooplankton in study area during study period

Class	Genus	April	May	June	July	Aug.	Sep.
Copepod	Cyclops sp.		+		+	+	
Cladocera	Daphnia sp.			+	+		+
	Moina sp.	+	+	+		+	+
Rotifer	Brachionus sp.		+	+	+	+	+
	Philodina sp.	+	+	+	+	+	+
Total species		$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$

