Acknowledgments

I am indebted to Almighty Allah who enabled me to complete the research work and write up the dissertation successfully for the degree of Master of Science (MS) in Fisheries Resource Management under the Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University (CVASU).

I would like to convey my sincere thanks and gratitude to my supervisor **Shahida Arfine Shimul**, Assistant Professor, Department of Fisheries Resource Management, CVASU for her valuable supervision and guidance. It was really a great pleasure and amazing experience for me to work under her supervision. I really deemed it and I realized it was an opportunity for me to work under her creative guidance.

It's my pleasure to convey my profound gratitude to my co-supervisor, **Dr. Sk Ahmad Al Nahid**, Associate Professor and Head, Department of Fisheries Resource Management, CVASU for his valuable advice, scholastic guidance, suggestions and inspiration.

I am greatly indebted to **Mr. Sk Istiaque Ahmed**, Assistant Professor, Department of Fisheries Resource Management, CVASU for his encouragement and cooperation at every stage of this study from its inception to completion.

I sincerely express deepest sense of gratitude and indebtedness to our honorable Vicechancellor **Prof. Dr. Goutam Buddha Das** and **Prof. Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU for their supportive administrative coordination to fulfill my research.

I sincerely thank all my classmates, specially **Saifuddin Rana, Abdullah Al Bari, Arifur Rahman** and **Abu Nayem** and technical staffs of Department of Fisheries Resource Management for their encouragement and support during research work.

Last but not least, I express my deepest sense of gratitude to my beloved parents and friends for their sacrifice, blessings and encouragement.

The Author

Mohammad Afsar Hossain

Abstract

The present study was conducted to estimate primary productivity in relation the physical and chemical properties and plankton abundance of Foy's lake. Plankton is one of the most important food items of fishes that indicates productivity of water body. Gross primary productivity, net primary productivity and critical respiration were estimated in pre-monsoon, monsoon and post-monsoon. Primary productivity was estimated 0.39 gCm⁻³h⁻¹ in pre-monsoon, 0.31 gCm⁻³h⁻¹ in monsoon and 0.61 gCm⁻³h⁻¹ in post monsoon. The lowest primary productivity was estimated 0.30 gCm⁻³h⁻¹ in April and the highest primary productivity was estimated 0.61 gCm⁻³h⁻¹ in September. Nine species of phytoplankton was estimated under five classes that includes Chlorophyceae, Bacillariophyceae, Cyanophyceae, Euglenophyaceae and Dinophyceae. The highest phytoplankton abundance was estimated 28 Cellsl⁻¹ in September and the lowest in July 13 Cellsl⁻¹. Five species of zooplankton namely Cyclops, Daphnia sp., Moina sp., Brachionus sp. and Padina sp. were identified under three classes viz Copepod, Cladocera and Rotifer. The highest abundance of phytoplankton was 17 units¹⁻¹ in September and the lowest abundance of phytoplankton was 7 unitsl⁻¹ in July. This study shows that the primary productivity vary with monsoon to monsoon and highest primary productivity was estimated in post monsoon.

Key words: Primary productivity, Phytoplankton, Zooplankton, Monsoon

CONTENTS

	Page No.
Acknowledgements	i
Abstract	ii
Content	iii
List of figures	v
List of tables	v
List of Appendices	vi
Abbreviation	vii
Chapter I Introduction	1
Chapter II Review of literature	3
Chapter III Materials and methods	7
3.1 Study area	7
3.2 Sampling procedure	8
3.2.1 Field analysis	8
3.2.2 Laboratory analysis	8
3.3 Primary production	8
3.4 Phytoplankton analysis	9
3.5 Zooplankton analysis	10

Chapter IV

Results	14
4.1 Physical parameters	14
4.1.1 Temperature	14
4.1.2 Transparency	15
4.1.3 Water depth	16
4.2 Chemical parameters	16
4.2.1 Dissolve oxygen	16
4.2.2 pH	17
4.2.3 Total alkalinity	18
4.2.4 Ammonia	18
4.2.5 Free carbon dioxide (CO_2)	19
4.2.6 Nitrate	19
4.3 Primary productivity	20
4.3.1 Gross primary productivity	17
4.3.2 Net primary production	20
4.3.3 Community respiration	21
4.3.4 Seasonal variation gross primary productivity	21
4.3.5 Seasonal variation of net primary productivity	22
4.4 Phytoplankton analysis	22
4.4.1 Percentages of phytoplankton species in study area	24
4.5 Zooplankton analysis	24
Chapter V Discussion	25
Chapter VI	
Conclusion	30
Recommendation	30
References	32
Appendices	38

List of figures

Figure No.	Title	Page No.
Figure 1	Monthly variation of air temperature	14
Figure 2	Monthly variation of water temperature	15
Figure 3	Monthly variation of water transparency	15
Figure 4	Monthly variation of water depth	16
Figure 5	Monthly variation of dissolve oxygen	17
Figure 6	Monthly variation of pH	17
Figure 7	Monthly variation of total alkalinity	18
Figure 8	Monthly variation of ammonia	18
Figure 9	Monthly variation of free carbon dioxide	19
Figure 10	Monthly variation of nitrate	19
Figure 11	Comparative estimation gross primary	20
	Productivity	
Figure 12	Monthly variation of net primary productivity	20
Figure 13	Monthly variation of community respiration	21
Figure 14	Seasonal variation of gross primary productivity	21
Figure 15	Seasonal variation of net primary productivity	22
Figure 16	Seasonal variation of phytoplankton number	23

Table No.	Title	Page No.
Table 1	Presence of phytoplankton during study period	23
Table 2	Presence of zooplankton during study period	24

Appendices

Appendices No.	Title	Page No.
Appendix 1:	Monthly physical parameters	38
Appendix 2:	Monthly chemical parameters	38
Appendix 3:	Monthly primary production	39
Appendix 4:	Seasonal variation of primary production	39
Appendix 5:	Quantitative results of phytoplankton	39
Appendix 6:	Quantitative results of zooplankton	39

ABBREVIATION

GPP	Gross Primary Productivity
NPP	Net Primary Productivity
CR	Community Respiration
gCm ⁻³ hr. ⁻¹	Gram Carbon per meter cube per hour
mg	Milligram
g	Gram
ft.	Feet
m	meter
μm	Micro Meter
°C	Degree Celsius
DO	Dissolve oxygen
LB	Light Bottle
DB	Dark Bottle
IB	Initial Bottle
PQ	Photosynthetic Quotient