Chapter-1

Introduction

Poultry farming in Bangladesh is the mode of keeping various types of birds for meat, egg, feather or sale. Poultry birds are broadly used in Bangladesh for meat and egg. Weather condition of Bangladesh is immensely friendly for poultry farming. According to DLS, 2019-2020 survey total poultry population in Bangladesh is 3563.18lakh.

Although poultry industry having extensive effect in both livelihood and economical effect in any country but it has some negative effect in our environment related to large scale accumulation of poultry wastes including manure and litter which may pose public health and environmental problems. About 3079 metric tons poultry manures are produced daily from a total of 42 million chickens in Bangladesh (Waste concern, 2005). Farmers in Bangladesh do not concern or knowledgeable about waste management of Poultry although it has posed serious environmental pollution problems. Globally, an excess of 90% poultry waste is spread as fertilizer on land close to the poultry farms (Moore *et al.*, 1995). This practice could negatively affect the environment protection and safety through surface and groundwater pollution at high level (Gerber *et al.*, 2006). Water-borne diseases can also spread from the poultry manure. Moreover, improper management of poultry wastes also causes air pollution through offensive odors and promotes the breeding of fly and rodent (Adeoye *et al.*, 1994).

According to (Thornton *et a*1.,2006) natural resource base, public health, social equity and economic growth can be hampered by negative livestock system effects. Necessary precautions must be taken along the poultry production, marketing and processing chains, poultry meat and eggs, otherwise it can be spread infectious agents that are harmful to humans.

The positive significant effect of education and farming experience on the farmers' perceptions increase their knowledge in handling environmental challenges relating to commercial poultry farming practice to provide safety environment in the society.

By using appropriate biosecurity measures including management and physical measures can help to reduce the risk of entrance, induction and spread of diseases, infections or infestations within a population. According to previous studies (Fraser *et al.*, 2010; Julien and Thomson, 2011) biosecurity helps in improving the health status of poultry by preventing the introduction of new disease pathogens by assessing all possible risks to animal health.

Clear understanding of the perception of poultry farmers on the environmental issues associated with commercial poultry farming is a useful first step because good perception helps the farmers to maintain appropriate environment on the farming area. According to Adesina and Baidu-Forson (1995) perception on waste management is a vital indicator on adaptation process. In Bangladesh, very limited numbers of studies have so far done to understand the status of farmer's perception or knowledge about poultry waste management. Therefore, the present study was undertaken to evaluate the present status of farmer's knowledge, perception and attitude towards the waste management strategies among the poultry farmers in Mirsharai Upazila, Chattogram, Bangladesh.

Chapter-2

Materials and Method

2.1 Study Area

The study was conducted at Mirsharai Upazila with an area of Chattogram District in the division of Chattogram, Bangladesh. It consists of 2 Thana and 2 Pauroshava. Mirsharai is located at 22.7722°N 91.5750°E. 55771 households are staying here and total area is 482.88 km². The population of poultry farms are near about 100 and 35 farms are randomly selected from this population as sample for this study.

2.2 Data Collection Procedure

A Structure Questionnaire is formulated and Including plethora of data for keeping our study objectives in view. The questionnaire was pre-evaluated with selected Livestock officers at Mirsharai Upazila so as to ensure that the questionnaire did not contain any obscurity and it could be easily perceived and complete by respondent. Data were collected through personal interview during February to May 2021.

Information was obtained on Socio demographic characteristics of farmers, Litter and Waste management knowledge, Housing and litter Management, Biosecurity practicing, Personal Hygiene, Knowledge about Zoonotic diseases, health and environmental effects of poultry wastes, perception of farmers on environmental issues related with farming, etc. Additional information was gathered through personal communication during farm visits.

Data analysis: Data were analyzed by using simple statistical methods for calculating frequencies and percentages and the results are submitted in tables.

Chapter-3

Results and Discussion

Table 1 indicates the current scenario of socio-demographic characteristics of farmer in the study area. The age of the majority (46%) of the farmers of this study is ranges from 30-39 years followed by the age group 20-29 years (34%). The highest part of the age group fell into the age group of 39 to 45 years which was 36 percent. Around 97% farmers were male whereas only 3% was female. It is indicating that women farmer participation in poultry rearing is low in this area. In addition, that poultry farming needs physical strength which is low in women.

Types	Categories	Frequency (N)	Percentage
Age (years)	20-29	12	34
	30-39	16	46
	40-49	4	11
	50-59	3	9
Gender(M/F)	Male	34	97
	Female	1	3
Marital Status	Married	24	69
	Unmarried	11	31
Education Level	Under SSC	2	6
	SSC	11	31
	HSC	10	29
	Honours	5	14
	Masters	4	11
	Uneducated	3	9
Monthly Income	1k-10k	16	46
	11k-20k	11	31
	21k-11akh	2	6
	Running	6	17
Other Livestock	Cattle	6	17
	Goat	1	3
	None	28	80

 Table 1: Socio demographic Characteristics of farmers

Majority of the responds (69%) were married. Most of the responds completed only SSC (31%), HSC (29%) whereas the 14 and 11% farmers obtained graduate and Master's degree, respectively. Around 9% famer is illiterate and 6% only completed

primary education level. This result indicates the education level of the farmers under this study is average. Skinner (2004) reported that education plays crucial role to proper waste management and hygiene leading to prevention of diseases and their potential hazards. Monthly income of the framers (46%) is under 10,000 taka. Only 20% farmers were having only cattle and goat in addition with poultry that indicates farmers did not engage large animal farming.

Types	Categories	Frequency (N)	Percentage
Farm types	Sonali	3	8.57
	Desi	3	8.57
	Broiler	25	71.43
	Pigeon	1	2.86
	Duck	2	5.71
	Fancy	1	2.86
Flock size	0-1000	18	51.43
	1001-2000	11	31.43
	2001-3000	4	11.43
	3000>	2	5.71
Experience	Yes	21	60
	No	14	40

 Table 2: Characteristics of study farms

Table 2 showed that around 71% poultry farmers were preferred broiler rearing due to its upgraded genetic combination from others. These results agree with (Laseinde *et al.*, 2005) who said that broiler production is more profitable than layer production in this part of the country. This study also showed that around 3% of poultry farmers reared fancy birds. The flock size of the most of the farmers (51.43%) was very small (0-1000 birds) whereas a small percentage of farmers (5.71%) had large flock (<3000 birds). Around 60% farmers were experienced in poultry farming while 40% farmers had no experience.

Parameter	Categories/Time	Frequency	Percentage
	interval/Name	(N)	
House type	Tin shed	14	40
	Semi Paka	19	54
	Building	2	6
Floor type	Concrete	26	74
	Mud	9	26
Litter Material used	Saw dust	27	77
	Sand	5	14
	Rice husk	2	6
	None	1	3
Litter Removal	All in All out	33	94
Method	None	2	6
Clean all before	Yes	34	97
replace	No	1	3
Remove only top most	Yes	4	11
litter	No	31	89
Time of litter change	4 days interval	1	3
	15 days interval	10	28
	30 days interval	21	60
	60 days interval	1	3
	Not change	2	6
Litter-treatment	PLT solution	6	17
Method	Yuka	3	9
	Savlon	10	29
	Timsen	7	20
	GPC 8	4	11
	Potash	1	3
	None	4	11
Material used to	Yes	12	34
prevent Air	No	23	66

Table 3: Housing & litter management of study farms

Table 3 indicates that around 54% people preferred semi paka house and 74% people reared poultry in concrete as floor. (Moore *et al.*, 2004) found that similar results as farmer reared birds in Concrete floors due to concrete are damp proof thereby making it easier to manage litter. Saw dust was commonly use, around 77% because of its availability. (Charles *et al.*, 2005) also reported that saw dust was the most popular

poultry litter materials used in the world. Most of the respond (94%) clear litter material at a time. In addition, that 89% people expel out whole litter material at a time and whereas 97% people did clear all sorts of materials before replacement. Around 60% people replaced litter in 30 days gaps before entry of new flock. Farmers preferred to use antiseptic as Savlon 27% and Timsen 20% for Cleaning the litter materials. Most of the responds (66%) used material to prevent air during cold weather.

Types	Categories	Frequency (N)	Percentage
Biosecurity	Good	6	17
	Fair	23	66
	Poor	6	17
Disinfectant	Savlon	10	28
	Timsen	12	34
	GPC 8	9	26
	Blis. Powder	1	3
	None	3	9
Foot Bath	Yes	7	20
	No	28	80

 Table 4: Biosecurity status of the farms

Table 4 showed that 66% people maintained biosecurity as fair mark. Maximum farmer used Timsen solution as a disinfectant where as 80% people do not use foot bath. Application of standard biosecurity measures is vital in protecting poultry birds from any disease (Dorea *et al.*, 2010) because good biosecurity in any farm keep freeing off any vulnerable diseases and increasing production performance.

 Table 5: Status of personal hygiene of working staffs

Name	Use	Frequency (N)	Percentage
Facemask	Yes	16	46
	No	19	54
Cloth Change	Yes	0	0
	No	35	100
Handwash	Yes	16	46
	No	19	54
Separate footwear	Yes	7	20
use	No	28	80
Gloves	Yes	4	11
	No	31	89

Personal hygiene like use of face musk, change of clothing, washing hands, use of separate footwear, gloves was shown in **table 5**. Around 46% people used facemask during standing in farm, Zero percent not farmer were shown that did not change cloth before entrance and exit, besides 46% farmer used handwash for cleaning hand where as 20% people were used separate footwear before and after entry in farm. Using of gloves as a health safety measures used in only 11% farmers.

Disease Name	Known/Unknown	Frequency (N)	Percentage
Salmonellosis	Yes	16	46
	No	19	54
Colibacillosis	Yes	4	11
	No	31	89
Psittacosis	Yes	0	0
	No	35	100
Influenza	Yes	27	77
	No	8	23
Cryptosporidiosis	Yes	0	0
	No	35	100

 Table 6: Farmers knowledge about zoonotic diseases

Table 6 showed maximum farmer were known two zoonotic disease such as Salmonellosis 46% and Influenza 77%. Epidemiological analyses of human infections with the H5N1 avian influenza strain demonstrate that close interaction with domesticated live poultry is a risk factor for human infection with the virus (van Boven et al., 2007; Babakir-Mina et al., 2007). Farmers were well known about Avian influenza in this study area.

Name	Waste produce	Frequency (N)	Percentage
Dung	Yes	6	17
	No	29	83
Waste feed	Yes	17	49
	No	18	51
Broken eggs	Yes	0	0
	No	35	100
Feather	Yes	0	0
	No	35	100
Dead birds	Yes	7	20
	No	28	80
Hatchery Waste	Yes	0	0
	No	35	100
Biosolids	Yes	0	0
	No	35	100
Litter	Yes	16	46
	No	19	54

 Table 7: Waste generated in the study farms

Table 7 showed that waste generated in farm by several means like dung (17%) from Cattle, Goat, waste feed (49%), dead bird (20%) and litter (46%). (Waste concern,2005) showed about 3079 metric tons poultry manures are produced daily from a total of 42 million chickens in Bangladesh.

Name	Using procedure	Frequency (N)	Percentage
Disposal of dead	Burning	3	9
birds	Burial	23	65
	Throwing	7	20
	Selling	2	6
Disposal of litter	Agriculture land	24	69
materials	Fish culture	5	14
	Sell	5	14
	River	1	3

Table 8 showed that management of waste by several means. A majority of farmers (65%) buried the dead birds followed by throwing (20%) and burning (3%). In case of litter materials, maximum (69%) farmer threw out litter material in Agriculture land whereas 16 % farmers sell or used litter in fish culture. A small percentage (3%) of

farmers disposes the litter materials in the river. Moreki & Kealkitse (2013) reported that there were several ways of disposing poultry waste which include burial, rendering, incineration, compositing, feed for livestock, fertilizer or source of energy which is in agreement with current finding in this area.

Managements	Name	Frequency (N)	Percentage
Therapeutic	Self	4	11
managements	Vet	11	31
	Dealer	3	9
	Self &Vet	15	43
	Self& Dealer	2	6
Knowledge about	Yes	13	37
farm	No	22	63
management			

 Table 9: Knowledge about farm management

The highest number of farms (43%) treated sick birds by both veterinarian and selfwhereas only 31% farms were treated by only veterinarian (Table 9). A small percentage of farm's (9%) were treated by both dealer and self -experience. These results agreed with Radwan *et al.* (2011) and Kantengwa (1988).

 Table 10: Farmers awareness about health and environmental effects of poultry wastes

Name	Aware/Not Aware	Frequency (N)	Percentage
Depletion of	Aware	19	54
Ozone Layer	Not Aware	16	46
Water Pollution	Aware	33	94
	Not Aware	2	6
Air Pollution	Aware	34	97
	Not Aware	1	3
Prevalence of	Aware	34	97
poultry diseases	Not Aware	1	3
Pest infestation	Aware	34	97
	Not Aware	1	3
Risk of human	Aware	34	97
Diseases	Not Aware	1	3
Noise	Aware	35	100
	Not aware	0	0

Table 10 showed the status of farmer's awareness about on health and environmental effects of poultry wastes. All (100%) the farmers were aware about the noise problems produced from poultry farms. Most of the farmers were concern about the poultry farms related water pollution (94%), air pollution (97%), pest infestation (97%) and risk of human disease (97%). Only 46% farmers were aware about the depletion of ozone layer due to poultry farm waste. Anosike (2007) reported that poultry production activities enhance environmental pollution of air, water and foul odour emission which causes huge discomfort to both the human and animal lives. Evans & Woolf (2013) was also said that ammonia emissions from poultry waste can have multiple health hazards including nasal irritation and cough for both human and animal.

Name	Training	Frequency (N)	Percentage
Farm	Yes	5	14
Management	No	30	86
Waste	Yes	3	9
Management	No	32	91
Biosecurity	Yes	3	9
	No	32	91

 Table 11: Farmers receive training

Farmers receive training in several fields which present in **Table 11.** This table showed that only 14% farmer received training on farm management. Around 91% farmers had no training on waste management and biosecurity. This observations in not consistent with finding of previous studies (Sarker *etal.*, 2009; Hossain and Ali, 2009) where 21% and 36% farmers received biosecurity and farm management training.

 Table 12: Waste Management facilities

Name of facilities	Present/Absent	Percentage
Manure Storage System	Absent	0
Box Type Manure Spreader	Absent	0
Incinerator	Absent	0
Pits flush System	Absent	0
Automated dry system	Absent	0
Double deck pre-cleaner	Absent	0
Pressure sprayer for fumigation	Absent	0

Different types of waste management facilities were showed in **table 12**. None of the farms under this study had manure storage system, box type manure spreader, incinerator; pits flush system, automated dry system and fumigation facilities. Amin et al. (2009) reported that 90% of storage systems were uncovered in poultry industries which are closely related with this study area finding.

 Table 13: Farmers awareness about environmental protection agency

Statement	Aware/Not Aware	Frequency (N)	Percentage
Hear about environmental protection agency	Not Aware	0	0
Awarenessenvironmentalprotection laws	Not Aware	0	0
Agencies Visit to farm in the past	Not Aware	0	0

Table 13 shows the scenario of awareness on environmental protection agency among the farmers of the study area. The table indicated that none of the farmer under this study had any kind of awareness on environmental protection agency, environmental protection laws and their tasks.

Table14: Farmer's attitude towards adaption of new technology of waste management

Technology help to recycling waste	Agree All Persons
Technology increases the working efficiency	Agree All Persons

Farmer's attitude

Table 14 showed that farmers attitude towards adaption of new technology of waste management. All the farmers (100%) were agreed that technology can help to recycling waste and technology subsequently increases the working efficiency.

Table 15: Knowledge level of farmers about waste management

Statement	Frequency		Percentage		Knowledge
	Known	Unknown	Known	Unknown	level
Manure & Dead poultry are the	31	4	89	11	Well
only Poultry wastes					Known
Poultry houses should be kept dry	31	4	89	11	Well
all the time					Known
Frequent packing of litter is only to prevent birds to contact disease	19	16	54	46	Mediocre
Poultry litter is not useful for land application	14	21	40	60	Fair
Storage of litter before land application must be done on the farm	30	5	86	14	Well Known
Dry litters should be stored in the open for a long time	21	14	60	40	Mediocre
Composting poultry litters does not reduce their odor	17	18	49	51	Fair
Collection of dead birds every other day will prevent spreading of disease	29	6	83	17	Well Known
Empty containers must be disposed according to the discretion of the farmer	32	3	91	9	Well Known
Poultry waste cannot be useful for other purposes	26	9	74	26	Good
Dead birds can be buried anywhere on the farm	14	21	40	60	Fair
Too much noise from birds kept inside the pen can cause hearing problems to the farmers	34	1	97%	3%	Well Known

Farmer's knowledge

Table 15 summarizes the knowledge level of waste management. Knowledge level in case of Manure & Dead poultry wastes, Storage system of litter materials, Poultry house management, Dead birds that spreading diseases, noise problem related to neighbors is well known. Knowledge level about litter management is mediocre. Using of poultry litter and dead bird buried system knowledge is at fair level.

Table 16: Perception of commercial poultry farmers on environmental issues associated with poultry farming

Statement	Strongly	Agree	Disagree	Undecided	Decision
	Agree				
Odour from poultry house produces flies		94%	3%	3%	High
and causes					
discomfort to the neighbours.					
Odour from poultry wastes can cause	3%	97%			High
sickness to farmers and					
their neighbours					
Excessive dumping of poultry wastes in		91%	3%	6%	High
water can cause harm to aquatic life					
Offensive odour coming from Poultry	3%	94%	3%		High
house can cause conflict between farmers					
and their neighbours.					
Offensive odour coming from animal	3%	91%		6%	High
house can make					
neighbours house unfit for social					
gathering					
Dead birds buried in the ground can		94%	3%	3%	High
decay and contaminate					
the ground water.					
Poultry wastes produce poisonous gases		97%		3%	High
which can cause respiratory problems to					
the farmers when continuously inhaled.					
Poultry wastes gathered up together in		94%		6%	High
one place can decay					
and contaminate the water table and					
pollute drinking water					
nearby.					
Improper poultry waste disposal invites		97%		3%	High
pests and rodents such					
as rats, cockroaches e.tc which can be					
vectors or carriers of					
diseases.		070		201	TT' 1
Poultry wastes produce gases which		97%		3%	High
contribute to global Poultry wastes					
produce gases which contribute to global					
warming and climate change					

Farmer's perception

Perception of commercial poultry farmers on environmental issues associated with poultry farming is shown in Table 16. Perception level on odour problem from poultry house, sickness to farmers and their Neighbours, fly problem, aquatic life, contaminate ground water, pollution of drinking water, Global warming and climate change is High level.

Table: 17: Overview of Constraints to adoption of integrated waste management

practices

Parameter	Very	Severe	Not	Not
	Severe		Severe	Constraint
Insufficient fund	3%	9%	82%	6%
Shortage of labor	3%	9%	82%	6%
Lack of extension information and contacts	3%	9%	85%	3%
Lack of demand for manure from livestock	3%	12%	71%	14%
farmers				
Inadequate waste storage facilities	0%	26%	63%	11%
Inadequate knowledge of waste management	0%	9%	77%	14%
practices				
Difficulty to burn during raining season	0%	20%	69%	11%
Lack of vehicle and transport costs	3%	3%	68%	26%
Poor pricing of poultry manure	0%	14%	72%	14%
Inadequate access to land	3%	11%	57%	29%
Bad attitude of farm attendants	0%	11%	35%	54%
Inadequate waste disposal facilities	0%	11%	66%	23%

Constraints of adoption of integrated waste management practices

Table 17 summarizes the different constraints that are facing by farmers towards the adoption of integrated waste management practices. Around 3% farmers mentioned that insufficient fund, shortage of labor, lack of extension of information and contacts, lack of demand of manure from livestock farmers and lack of vehicle and transport costs are the severe constraints in adopting integrated waste management practices. Around 26 and 20% farmers thought that inadequate waste storage facilities and difficulty of burring waste during rainy seasons also act as severe constraints respectively in adoption of integrated waste management practices. In this finding 70-90% farmer do not have severe problem about insufficient fund, labor shortage, lack of extension information and lack of manure demand, inadequate knowledge of waste management, whereas 30-69 % farmer do not face severe problem on waste storage area, vehicles problems, land problem, waste disposal facilities.

Chapter-4

Conclusion

In conclusion, knowledge level of waste management was well known by the farmers in the present study area. Perception of commercial farmers on environmental issues associated with poultry farming was high. None of farmer had waste management facilities. None of them were aware about the task of Environmental Protection agency. All the farmers were agreed that using technology could help in recycling waste with increasing working efficiency. Biosecurity level was fair among the farmers in this area. Highest percentage of farmers was known about two zoonotic disease name's salmonellosis and avian influenza. All farmers agreed with recycling waste by using technology and aware with health and environmental effect on poultry wastes.

Limitation of the Study

- All farmers were not co-operative and friendly.
- Observable poultry disease and clinical sign was not available.
- The study was conducted in selected farm due to limited time during internship rotation.

Recommendation

The study recommends that increase waste management facilities among the farmers and giving training about farm management and biosecurity. Campaign or training should be provided to the farmers to raise awareness about environmental protection act and awareness about public health issues.

Chapter -5

References

Adesina, A. A., & Baidu-Forson, J. (1995). Farmers' perceptions and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guinea, West Africa. *Agricultural economics*, *13*(1), 1-9.

Adeoye, G. O., Sridhar, M. K. C., & Mohammed, O. E. (1994). Poultry waste management for crop production: Nigerian experience. *Waste management & research*, *12*(2), 165-172.

Anosike, V. (2007). Health Implications of Poultry Waste Utilization for Urban Agriculture: An Ecohealth Approach. *Epidemiology*, *18*(5), S53.

Abdullah-Al-Amin, M., Rahman, M. S., Howlider, M. A. R., & Ahmed, M. M. (2009). Disposal of layer droppings reared in case and impact on environmental pollution. *Journal of the Bangladesh Agricultural University*, 7(452-2016-35804).

Concern, W. (2005). CDM project potential in the poultry waste management sector in Bangladesh. *Banani Model Town, Dhaka, Bangladesh*.

Charles, E. B. (2005). Litter management for confined turkeys. *Poultry science and technical guide*, (41), 3-7.

Dorea, F. C., Berghaus, R., Hofacre, C., & Cole, D. J. (2010). Survey of biosecurity protocols and practices adopted by growers on commercial poultry farms in Georgia, US A. *Avian diseases*, *54*(3), 1007-1015.

DLS. Livestock Economy at a glance. (2019-20)

Evans B and SH Woolf. (2013). The potential health impact of a poultry litter- toenergy facility in the Shenandoah Valley, Virginia. Center for Environmental studies Virginia Commonwealth University.

Fraser, R. W., Williams, N. T., Powell, L. F., & Cook, A. J. C. (2010). Reducing Campylobacter and Salmonella infection: Two studies of the economic cost and attitude to adoption of on-farm biosecurity measures. *Zoonoses and Public Health*, *57*(7-8), e109-e115.

Gerber, P., Opio, C., & Steinfeld, H. (2007). Poultry production and the environment– a review. Animal production and health division, Food and Agriculture Organization of the United Nations, Vialedelle Terme di Caracalla, 153.

Hossain, M. M., & Ali, M. S. (2009). Waste management in poultry farms and environmental protection in Bangladesh. In *Proceedings of the 6th International Poultry Show and Seminar. The World Poultry Science Association, Bangladesh Branch, Dhaka, Bangladesh* (pp. 199-202).

Leibler, J., Otte, J., &Silbergeld, E. K. (2008). Zoonotic disease risks and socioeconomic structure of industrial poultry production: review of the US experience with contract growing. *Research Reports RR*, (08-06).

Moore, P. A., Daniel, T. C., Sharpley, A. N., & Wood, C. W. (1995). Poultry manure management: Environmentally sound options. *Journal of soil and water conservation*, *50*(3), 321-327.

Moreki, J. C., & Keaikitse, T. (2013). Poultry waste management practices in selected poultry operations around Gaborone, Botswana. *International Journal of Current Microbiology and Applied Sciences*, 2(7), 240-248.

Radwan, G. N., Wahid, W. Y. A., El-Derwy, D., & El-Rabat, M. (2011). Knowledge, attitudes, and practices of avian influenza among backyard poultry breeders in Fayoum Governorate, Egypt. *The Journal of the Egyptian Public Health Association*, *86*(5 and 6), 104-110.

Swu, I. C., & Singh, S. P. (2012). Constraints perceived by broiler farmers in adoption of scientific poultry production practices. *Veterinary Practitioner*, *13*(1), 116-120.

Skinner, J. H. (2004). Solid waste management policies for the 21st century. In *Waste Management Series* (Vol. 4, pp. 1091-1098). Elsevier.

A. Keftop, and P. Lacy (Eds). Solid Waste Assessment, Monitoring and Remediation. Twardorwska pp. 1091-1098

Sarker, B. C., Alam, M. A., Rahman, M. M., Islam, A. F. M. T., & Chowdhury, M. G. F. (2009). Waste management of commercial poultry farms in Bangladesh. *Journal of innovation and development strategy*, 2(3), 34-37.

Thornton, P. K. (2010). Livestock production: recent trends, future prospects. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *365*(1554), 2853-2867.

Appendix

Questionnaire:

✓ <u>Socio Demographic characters</u>

Name Of Farmer	
Location	
Gender	
Age	
Marital Status	
Education level	
Monthly Income	
Other Livestock	

✓ Farm Characteristics

Types of Farm	
Flock Size	
Farming experience	

✓ Housing and litter Management

1. House type	
2. Type of floor	
3. Litter material used	
4. Litter removal method	
a. Clear all and sweep floor before	
replacing	
b. Remove only topmost litter	
5. Frequency of litter change (every	
day, once a week, every month,	
every 6 months)	
6. Litter treatment method (lime,	
drying etc. or other method)	
7. Material Used to prevent air passage	

✓ **Biosecurity Practicing**

Biosecurity	Good/fair/Poor
Disinfectant use	
Foot bath	

✓ Personal hygiene of working staffs

Parameter	Observation	(yes/NO)
Face musk		
Change of clothing		
Hand washing before entrance		
Hand washing after work		
Separate footwear		
Change footwear before leaving the farm		
Use gloves		

✓ Knowledge About Zoonotic diseases/ Waste related Diseases

Disease Name	Known/ Unknown
Salmonellosis	
Colibacillosis	
Psittacosis	
Influenza	
Cryptosporidiosis	

✓ <u>Waste Management</u>

Disposal of dead birds	Burial/Burning/Selling/Throwing
Disposal of littler materials	Sell/Fish Culture/Agricultural land

> <u>Waste Generated by respondents</u>

Waste generated	Amount
Dungs	
Waste feed	
Broken eggs	
Feather	
Dead birds	
Hatchery waste	
Biosolids	
Litter	

✓ <u>Waste management facilities</u>

Parameter	Present/Absent
Manure storage system	
Box type manure spreaders	
Incinerator	
Pits flusher system	
Automated litter dryer system	
Double deck pre cleaner	
Pressure sprayer for fumigation	

✓ Knowledge level of waste management

Knowledge statement	Yes/No
Manure and dead poultry are the only	
poultry wastes	
Poultry houses should be kept dry all the	
time	
Frequent packing of litters is only to	
prevent birds to contact diseases	
Poultry litter is not useful for land	
application	
Storage of litter before land application	
must be done on the farm	
Dry litters should be stored in the open	
for a long time	
Composting poultry litters does not	
reduce their odor	
Collection of dead birds every other day	
will prevent spreading of disease	
Empty containers must be disposed	
according to the discretion of the farmer	
Poultry wastes cannot be useful for other	
purposes	
Dead birds can be buried anywhere on	
the farm	

✓ <u>Health and environmental effects of poultry wastes</u>

Parameter	Awareness/Not Awareness
Depletion of ozone layer	
Water pollution (surface water and	
ground water)	
Air pollution	
Prevalence of poultry disease	
Pest infestation	
Risk of human infection (respiratory,	
digestive, etc.)	
Noise	

✓ <u>Other management:</u>

Therapeutics management	Self/veterinarian/dealer/quack
Knowledge about farm management	

✓ <u>Perception of commercial poultry farmers on environmental issues</u> <u>associated with poultry farming</u>:

Odour from poultry house produces flies and causes	SA, AG, UD, DA
discomfort to the neighbours.	
Odour from poultry wastes can cause sickness to farmers and	SA, AG, UD, DA
their neighbours	
Excessive dumping of poultry wastes in water can cause harm to aquatic	SA, AG, UD, DA
life	
Offensive odour coming from Poultry house can cause conflict	SA, AG, UD, DA
between farmers and their neighbours.	
Offensive odour coming from animal house can make	SA, AG, UD, DA
neighbours house unfit for social gathering	
Dead birds buried in the ground can decay and contaminate	SA, AG, UD, DA
the ground water.	
Poultry wastes produce poisonous gases which can cause respiratory	SA, AG, UD, DA
problems to the farmers when continuously inhaled.	
Poultry wastes gathered up together in one place can decay	SA, AG, UD, DA
and contaminate the water table and pollute drinking water	
nearby.	
Improper poultry waste disposal invites pests and rodents such	SA, AG, UD, DA
as rats, cockroaches e.tc which can be vectors or carriers of	
diseases.	
Poultry wastes produce gases which contribute to global	SA, AG, UD, DA
warming and climate change	
Too much noise from birds kept inside the pen can cause	SA, AG, UD, DA
hearing problems to the farmers	
	•

Unpleasant odour from the poultry house can prevent vehicles from transporting people to the area.	SA, AG, UD, DA
Pesticides used in washing or disinfecting poultry house can cause pollution when they enter surface or ground water.	SA, AG,UD, DA
Dust generated during food distribution can cause nose irritation	SA, AG,UD, DA
Over application of poultry wastes to the soil can contaminate the soil and make it useless for crop production.	SA, AG,UD, DA

✓ Farmers on awareness of Environmental Protection agency

Hear about environmental protection agency	Yes	No
Awareness environmental protection laws	Yes	No
Agency's visits to farm in the past	Yes	No

✓ Farmers' awareness of activities performed by EPA in managing environmental pollution

Activities	Aware/Not
	Aware
Enforcement of environmental laws	
Arresting and prosecuting environmental law offenders	
Conducting environmental awareness campaign	
Issuing of warning notice to farmers due to public complaints	
on	
Pollution	
Education of poultry farmers on waste disposal	
Inspection of poultry houses	
Monitoring and survey of water, air, land and soil in case of	
Pollution.	

✓ Farmers attitude towards adaption of new technology of waste management

- 1. Technology help to recycling waste
- 2. Technology increases the working efficiency

✓ Constraints to adoption of integrated waste management practices

	Constraints	Very severe	Severe	Not severe	Not a constraint
1	Insufficient fund				
2	Shortage of labor				
3	Lack of extension information and co				
	ntacts				
4	Lack of demand for manure from live				
	stock farmers				
5	Inadequate waste storage facilities				
6	Inadequate knowledge of waste mana				
	gement practices				
7	Difficulty to burn during raining seas				
	on				
8	Lack of vehicle and transport costs				
9	Poor pricing of poultry manure				
10	Inadequate access to land				
11	Bad attitude of farm attendants				
12	Inadequate waste disposal facilities				

✓ Farmers received any training on farm management, waste management, biosecurity

Types of training	Response of farmers (yes/no)
Farm management	Yes/No
Waste management	Yes/No
Biosecurity	Yes/No