NUCLEOTIDE SEQUENCING AND DETECTION OF MUTATION IN CARCASS ASSOCIATED CANDIDATE GENES IN INDIGENOUS CATTLE OF BANGLADESH

A thesis by **ARJUMAN LIMA** Roll No.: 0118/01 Registration No.: 485 Session: 2018-2019 (January-June)

A thesis submitted to the Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University, Chattogram in the partial fulfillment of the requirements for the degree of Masters of Science in Animal Breeding and Genetics

DEPARTMENT OF GENETICS AND ANIMAL BREEDING FACULTY OF VETERINARY MEDICINE

CHATTOGRAM VETERINARY AND ANIMAL SCIENCES UNIVERSITY CHATTOGRAM-4225

JUNE, 2020

NUCLEOTIDE SEQUENCING AND DETECTION OF MUTATION IN CARCASS ASSOCIATED CANDIDATE GENES IN INDIGENOUS CATTLE OF BANGLADESH

A thesis by

ARJUMAN LIMA

Roll No.:0118/01

Registration No.: 485

Session: 2018-2019 (January-June)

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

(Prof. Dr. Gous Miah) Supervisor -----

(Prof. Dr. Ashutosh Das) Co-Supervisor

Prof. Dr. Ashutosh Das Head Chairman of the Examination Committee

DEPARTMENT OF GENETICS AND ANIMAL BREEDING FACULTY OF VETERINARY MEDICINE CHATTOGRAM VETERINARY AND ANIMAL SCIENCES UNIVERSITY CHATTOGRAM-4225 JUNE, 2020

Authorization

I, DR. Arjuman Lima assure that I have performed all works furnished here in this report. The information has been collected from books, national and international journals, websites and other references. All references have been acknowledged accordingly.

I hereby declare that I am the sole author of the thesis "Nucleotide sequencing and detection of mutation in carcass associated candidate genes in indigenous cattle of Bangladesh". I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Therefore, I hold the entire responsibility for collection, compilation, preservation and publication of all data accumulated here in this report. I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author June, 2020

List of contents

Authorization	iii
List of Contents	iv-vi
List of Abbreviation	vii-ix
List of Tables	Х
List of Figures	xi
List of Appendices	xii
Acknowledgments	xiii-xiv
Dedication	XV
Abstract	xvi
Chapter 1: Introduction	1-5
Chapter 2: Review of Literature	6-21
2.1 Cattle genetic resources in Bangladesh	6-8
2.2 Carcass and meat quality traits	9
2.3 Improvement of carcass traits related to beef quality	9-10
2.4 Genes responsible for carcass quality and meat traits	10-11
2.5 Candidate genes	12-14
2.5.1 Strategies used in the candidate gene approach	12-13
2.5.1.1 Selecting a candidate gene	12
2.5.1.1 Choosing a DNA polymorphism	12-13
2.5.2 <i>CACNA2D1</i> gene	13-14
2.5.3 <i>MYF5</i> gene	14
2.6 Marker-assisted selection	14-15
2.6.1 Uses of marker-assisted selection in carcass related traits	15-16
2.6.2 Limitations of marker-assisted selection for production	
and carcass traits	16-17
2.7 From biomarkers to molecular mechanisms of meat quality	17
2.8 Techniques used for gene isolation	18-19
2.8.1. PCR	18
2.8.2. Sanger sequencing	18-19
2.9. Single nucleotide polymorphisms	19-20
2.10 Application of the data in breeding	20-21

Chapter 3: Materials and Methods	
3.1 Study area	22
3.2 Selection of experimental animals	22
3.3 Sample collection	23
3.4 DNA extraction	23
3.5 DNA quantification	23-24
3.6 Primers used	24-25
3.7 Polymerase chain reaction (PCR)	26-27
3.8 Agarose gel electrophoresis	28
3.9 Gene sequencing of PCR product	28-30
3.9.1 PCR product purification	28-29
3.9.2 Sequencing	29
3.9.3 The analytical method of sequencing	29-30
3.10 Phylogenetic analysis	30
3.11 Impact of the mutation on protein	30
Chapter 4: Results	31-51
4.1. <i>CACNA2D1</i> gene	31-43
4.1.1 PCR amplification of CACNA2D1 gene	31-32
4.1.2 Nucleotide sequences of CACNA2D1 gene	33-35
4.1.3 Multiple sequence alignment of CACNA2D1 gene	36
4.1.4 Phylogenetic analysis of CACNA2D1 gene	37
4.1.5 Mutations detected in CACNA2D1 gene	38-40
4.1.6 Overall genotypic and allelic frequencies of different	
polymorphisms detected in CACNA2D1 gene	40-42
4.1.6.1 C1993A mutation in CACNA2D1	40-41
4.1.6.2 T2058A mutation in CACNA2D1 gene	41
4.1.6.3 T2068A mutation in CACNA2D1 gene	42
4.1.7 Impact of detected mutations on CACNA2D1 protein	42-43
4.2 <i>MYF5</i> gene	44-51
4.2.1 PCR amplification of <i>MYF5</i> gene	44-45
4.2.2 Nucleotide sequences of <i>MYF5</i> gene	44-47
4.2.3 Multiple sequence alignment of MYF5 gene sequences	48
4.2.4 Phylogenetic analysis of <i>MYF5</i> gene	49
4.2.5 Mutations detected in the <i>MYF5</i> gene	50
4.2.6 Overall allelic and genotypic frequencies of different	
polymorphisms detected in MYF5 gene	51

4.2.6.1 C1795T in <i>MYF5</i> gene	51
Chapter 5: Discussion	
5.1 CACNA2D1 gene	
5.1.1 Nucleotide sequencing	52
5.1.2 Genetic divergence based on Phylogenetic analysis	53
5.1.3 Alignment analysis	53
5.1.4 Polymorphisms in CACNA2D1 gene	53-55
5.1.5 Impact of mutations in CACNA2D1 gene	55-56
5.2 <i>MYF5</i> gene	
5.2.1 Nucleotide sequencing	56
5.2.2 Genetic divergence based on Phylogenetic analysis	57
5.2.3 Alignment analysis	57
5.2.4 Polymorphism in <i>MYF5</i> gene	57-58
5.2.5 Impact of mutations in <i>MYF5</i> gene	58-59
Conclusion	
References	62-74
Appendices	75-78
Biography	79

List of Abbreviations

А	Adenine
ADG	Average daily gain
AFS	Australian friesian sahiwal
AI	Artificial insemination
Asp	Aspartic
BCAA	Branched-chain amino acid
BER	Bangladesh economic review
BLAST	Basic local alignment search tool
BONEP	Bone percentage
bp	Base pair
BTA	Bos taurus autosome
С	Cytosine
CACNA2D1	Calcium voltage-gated channel auxiliary subunit
	alpha2delta 1
Chr	Chromosome
cm	Centimeter
cM	Centromeric
CVASU	Chattogram Veterinary and Animal Sciences University
CWT	Carcass weight
Cys	Cysteine
dbSNP	The single nucleotide polymorphism database
ddATP	Dideoxyadenosine triphosphate
ddCTP	Dideoxycytidine triphosphate
ddGTP,	Dideoxyguanosine triphosphate
ddTTP	Dideoxythymidine triphosphate
DLS	Department of livestock services
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide triphosphates
dsDNA	Double stranded DNA
e.g.	Example
EDTA	Ethylene demine tetra acetic acid

EPD	Expected progeny differences
FABG	Favorprep Blood Genomic
FAO	Food and Agricultural Organization
FAOSTAT	Food and Agriculture Organization Corporate Statistical
	Database
FCR	Feed conversion ratio
G	Guanosine
gDNA	Genomic DNA
GDP	Gross domestic product
Ile	Isoleucine
ILRI	International livestock research institute
kg	Kilogram
LMA	Longissimus muscle area
MAS	Marker assisted selection
ml	Milliliter
MoyD	Myogenic determination
mRNA	Messenger RNA
MTBR	Meat-to-bone ratio
MYF	Myogenic factor
MyoG	Myogenin
NAGRP	National animal genome research program
NCBI	National Center for Biotechnology information
ND	Non-descriptive
PCR	Polymerase chain reaction
PCR-SSCP	Polymerase chain reaction-single-strand conformation
	polymorphism
PIC	Polymorphism information content
PRTC	Poultry Research and Training Centre
QTL	Quantitative trait loci
RCC	Red Chittagong cattle
RFI	Residual feed intake
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid

SCS	Somatic cell score
SNP	Single nucleotide polymorphism
Т	Thymine
TAE	Tris-acetate-EDTA
Trp	Tryptophan
Tyr	Tyrosine
UNIDO	UNIDO United Nations Industrial Development
	Organization
USA	United State of America
USDA	United States Department of Agriculture
UV	Ultraviolet
α-KIC	A-ketoisocaproate
%	Percentage
μl	Micro liter

Tables	Title of Tables	Page No
1	Livestock population of Bangladesh (BER, 2017-2018)	6
2	Available indigenous cattle of Bangladesh	8
3	Genes related to carcass quality and meat traits	11
4	Primers of the bovine CACNA2D1 and MYF5 gene designed	25
	for PCR	
5	Steps and conditions of thermal cycling for CACNA2D1 and	27
	MYF5 primers in PCR	
6	Polymorphic sequence variations detected in the CACNA2D1	38
	gene in Bangladeshi cattle	
7	Overall genotypic and allelic frequencies of C1993A mutation	41
	detected in CACNA2D1 gene	
8	Overall genotypic and allelic frequencies of T2058A mutation	41
	detected in CACNA2D1 gene	
9	Overall genotypic and allelic frequencies of C2068A mutation	42
	detected in CACNA2D1 gene	
10	Overall genotypic and allelic frequencies of C1795T mutation	51
	detected in MYF5 gene	

List of Tables

Figures	Title of Figures	Page No
1	Gel electrophoresis image for amplicon of CACNA2D1 exon 25	32
2	Nucleotides sequence of CACNA2D1 gene	34
3	BLAST result of the CACNA2D1 gene with the sequence	35
	of Bos indicus	
4	Comparison of CACNA2D1 gene sequences of Bos Taurus with	36
	sequences of gene in studied cattle population showing a deletion at	
	219 bp position	
5	Phylogenetic tree for CACNA2D1 gene in different breeds of cattle	37
6	Sequencing results of the C1993A mutation in the CACNA2D1	39
	gene in Bangladeshi cattle	
7	Sequencing results of the T2058A mutation in the CACNA2D1	39
	gene in Bangladeshi cattle	
8	Sequencing results of the C2068A mutation in the CACNA2D1	40
	gene in Bangladeshi cattle	
9	Impact of C1993A substitution CACNA2D1 gene on the structure	43
	and function of CACNA2D1 protein	
10	Impact of C2068A substitution in CACNA2D1 gene on the structure	43
	and function of CACNA2D1 protein	
11	Gel electrophoresis image for amplicon of MYF5 gene	45
12	Nucleotides sequence of MYF5 gene	46
13	BLAST result of the MYF5 gene with the sequence of Bos indicus	47
14	Comparison of MYF5 gene sequences of Bos taurus and Bos	48
	indicus with sequences of MYF5 gene in Bangladeshi cattle	
15	Phylogenetic tree of MYF5 gene. BD Cross indicates Bangladeshi	49
	crossbred cattle (in the current study); BD RCC indicates Red	
	Chittagong cattle of Bangladesh (in the current study)	
16	Sequencing results of the C1795T mutation in the MYF5 gene in	50
	Bangladeshi cattle.	

List of Figures

Appendices	Title of Appendices	Page no
Ι	Gel electrophoresis image	75
II	Sequencing data	76-77
III	Data collection form	78

List of Appendices

Acknowledgment

Through this acknowledgment I like to express my gratitude to everybody who assisted me in shaping this study work; without their assistance, I would not have been able to finish my thesis.

Prima facie, I am grateful to Almighty ALLAH for the good health during this pandemic, and for giving me the strength and opportunity to do my research work and complete it successfully for the degree of Masters of Science (MS) in Animal Breeding and Genetics under the Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences University (CVASU), Bangladesh.

Secondly, I would like to express the first and foremost heartiest appreciation, deepest sense of gratitude, and best regards to my supervisor **Dr. Gous Miah**, Professor, Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences University (CVASU), Bangladesh. It is my proud privilege to offer sincere and well-devoted thanks to him for his worthy guidance, sympathetic supervision inspiration, valuable suggestions, constructive criticism and parental affection, and for providing all necessary facilities for the completion of this research work. It is the greatest achievement of my life to complete the post-graduation under his able guidance.

I express my cordial thanks to my co-supervisor **Dr. Ashutosh Das**, Professor, Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences University for his guidance, constant encouragement, and assistance in keeping my progress on whole research period. Without his knowledge, perceptiveness, and encouragement I would never have finished this work.

I also express my extreme thanks to **Dr. Md. Kabirul Islam Khan**, Professor, Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences University for his kind support, guidance, suggestions and help not only the entire research work but also the whole post-graduation period. I also express my extreme thanks to Professor Dr. Omar Faruk Miazi, Dr. Tahmina Bilkis. Assistant Professor and DR. Moksedul Momin, Assistant Professor, Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences University for their constant guidance and encouragement at every stage of this study from its inception to completion.

I cherish the indispensable help, cooperation, motivational zeal and all-time presence of my dear friends **DR**. **Mishuk Shaha** (CVASU) for his support during my whole work. A lot of thanks to **DR**. **Inkeyas Uddin**, Scientific Officer, Poultry Research and Training Center (PRTC) and all the technician of PRTC, Chattogram and laboratory assistants of Department of Genetics and Animal Breeding for their excellent technical assistance.

I would like to express my sincere gratitude to the Ministry of Science and Technology, Government of the People's Republic of Bangladesh for providing funds under the special allocation for science and technology for implementing this research. This research work is also financed by CASR, CVASU for providing funds to implement this research. I would like to express my deep sense of gratitude and thanks to honorable Vice Chancellor, Professor Dr. Goutam Buddha Das, Chattogram Veterinary and Animal Sciences University.

I am also grateful to all the members of my beloved family for their love, affection and motivation that inspired me to work more. They are the backbone of everything I achieved up to and after it has taken me to come to this stage.

I got cooperation from many persons during the tenure of my experiment. I am immensely grateful to all of them, although it is not possible to mention everyone by name and also thankful to farmers of Hathazari Thana for helping me during experimental work.

> The Author June, 2020

Dedication

To my ever loving parents

Mr. Mahabubur Rahman

and

Mrs. Jarna Tara Begum

Abstract

Carcass related traits are very complex and difficult to measure phenotypically, they are not usually included in selection programs. Several studies have indicated associations between genes associated with carcass traits and the genetic polymorphisms in these genes. However, genetic research on indigenous cattle carcass traits in Bangladesh is scanty. Therefore, this study was carried out to screen polymorphisms of the CACNA2D1 gene for carcass weight, dressing percentage, meat percentage, and backfat thickness and MYF5 for live weight, loin eye height, loin eye area and water holding capacity. To identify and assess the association between polymorphisms and carcass traits a total of 80 animals were randomly selected. Genomic DNA was extracted from collected blood samples using a commercial DNA extraction kit for amplification of the fragments of exon 25 of CACNA2D1 gene and exon 2 of MYF5 gene using Polymerase Chain Reaction (PCR). PCR products were sequenced using DNA sequencing. Phylogenetic analysis was also performed to explore the genetic diversity of different cattle. This preliminary research on polymorphism of the CACNA2D1 gene exon 25 in cattle revealed C1993A, T2058A, C2068A might be helpful as genetic markers in Red Chittagong Cattle (RCC) and Crossbred (RCC \times Local) cattle. According to the score in Polyphen2, it can be confidently predicted to be deleterious. The SNP C1993A resulted in a missense mutation leading Leu (L) to 658 Ile (I) amino acid substitution, which may cause possible damage due to the less significant effect of isoleucine in protein synthesis. This detrimental effect may cause a reduction in muscle mass along with body weight. The absence of this mutation in the RCC population may have a positive effect, and carcass quality may be better in RCC than crossbreed as those mutations may negatively impact the cattle population. In case of MYF5 the mutation at the 1795C>T position, which is intronic, does not cause an amino acid substitution but several recent investigations revealed that SNPs in the intron region had significant associations with carcass and meat quality traits. Results from this study indicate that the CACNA2D1 gene and MYF5 have potential effects on carcass and meat quality traits, opening up possibilities for cattle breeding and improvement in gene-assisted selection and future research is necessary to evaluate other candidate genes. Moreover, the results for cattle carcass traits would be a scientific basis for the conservation and utilization of cattle genetic resources.

Keywords: Carcass trait, indigenous cattle, DNA sequencing, polymorphism, meat quality.