Prevalence of gastrointestinal parasitic infections, haemoprotozoan diseases and their associated risk factors in sheep and goat in selected hilly areas of Bangladesh

Towhida Kamal Roll No.: 0118/01

Registration No.: 484 Session: 2018 – 2019

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Parasitology

Department of Pathology and Parasitology Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University Chattogram – 4225, Bangladesh

June 2020

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Towhida Kamal June 2020

Prevalence of gastrointestinal parasitic infections, haemoprotozoan diseases and their associated risk factors in sheep and goat in selected hilly areas of Bangladesh

Towhida Kamal

Roll No.: 0118/01 Registration No. 0484 Session: 2018 – 2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Prof. Dr. Mohammad Alamgir Hossain Associate Prof. Dr. Md. Abdul Alim **Research Supervisor**

Research Co-Supervisor

Prof. Dr. Sharmin Chowdhury Head of the Department

Department of Pathology and Parasitology Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University Chattogram – 4225, Bangladesh

June 2020

ACKNOWLEDGEMENT

I would like to express the deepest sense of gratitude and all sorts of praises to the Almighty Allah, whose blessings enabled me to complete this thesis.

I sincerely value the patience, guidance and mentorship from my Supervisor and Cosupervisor, Prof. Dr. Mohammad Alamgir Hossain and Associate Prof. Dr. Md. Abdul Alim, respectively, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram.

I humbly thankful to my venerable teacher Dr. Sharmin Chowdhury, Professor and Head, Department of Pathology and Parasitology, CVASU, for his valuable advice, technical support and providing laboratory facilities during this research work.

The project would not have been a success without the financial support from Krishi Gobeshona Foundation (KGF), Bangladesh Agricultural Research Council, Bangladesh. I unassumingly acknowledged to the authority of KGF and Professor Dr. Md Kabirul Islam Khan, Principal Investigator of the Project entitled by "Increasing livestock production in the Hills through better husbandry, health service and improving market access through value and supply chain management", funded by KGF, for his kind co-operation and allocating the fund smoothly.

My sincere thanks also go to F.M. Yasir Hasib (MS fellow in Pathology), Md. Bayzid (MS fellow in Parasitology) and Md. Anamul Bahar Bhuiyan for their help during sample collection and examination in the laboratory and data analysis.

Last but not the least, I would ever be thankful to all my well wishers, family members for their inspiration, appreciation and blessings throughout my entire life.

The author June 2020

ABBREVIATIONS

%	percent
A	Adenine
bp	Base pair
С	Cytosine
САТ	Card Agglutination Test
CVASU	Chattogram Veterinary and Animal Sciences University
DLS	Directorate of Livestock Services
e.g	example
ELISA	Enzyme Linked Immuno-Sorbent Assay
etc	Et cetra
FY	Fiscal Year
G	Guanine
GDP	Gross Domestic Products
GI	Gastrointestinal
GIN	Gastrointestinal Nematode
GIT	Gastrointestinal tract
НСТ	Hematocrit Centrifugation Technique
HRM	High Resolution Melting
IFAT	Indirect Immunofluorescence Antibody Test
LAMP	Loop Mediated Isothermal Amplification
NARC	National Agricultural Research Centre
NGS	Next Generation Sequencing
nPCR	Nested Polymerase Chain Reaction
PCR	Polymerase Chain Reaction
qPCR	Quantitative Polymerase Chain Reaction
RFLP	Restriction Fragment Length Polymorphism
RLB	Reverse Line Blot
sp.	species
SSU	Small Sub-unit
Т	Thymine

TBDs	Tick Borne Diseases
TBPs	Tick Borne Protozoa

CONTENTS

List of Topics	Page No.
Acknowledgement	iv
Abbreviations	v-vi
Contents	viii-xi
List of Tables	xii
List of Figures	xiii
ABSTRACT	xiv

CONTENTS

Chapter	List of Topics	Page
		No.
1	INTRODUCTION	1-4
2	REVIEW OF LITERATURE	5-25
	2.1. Helminthoses	5
	2.1.1. Nematode	6
	2.1.1.1. Life cycle	7
	2.1.1.2. Factors affecting nematode abundance	8
	2.1.1.2.1. Climatic factors	8
	2.1.1.2.2. Management systems	9
	2.1.1.2.3. Host factors	10
	2.1.1.2.4. Parasite factors	10
	2.1.2. Trematodes	10
	2.1.2.1. Life cycle	11
	2.1.3 Cestodes	12
	2.1.3.1 Life cycle	12
	2.1.4 Diagnosis of parasites in small ruminants	13
	2.1.5. Prevalence of gastrointestinal parasites in Bangladesh	13
	2.1.6. Prevalence of gastrointestinal parasites in other countries	15
	2.2 Haemoprotozoan diseases	16
	2.2.1 Babesiosis	16
	2.2.1.1 Etiology	16
	2.2.1.2. Epidemiology	17
	2.2.1.2.1. Geographical occurrence	17
	2.2.1.2.2.Transmission	17
	2.2.1.2.3 Risk factors	17
	2.2.1.2.3.1. Susceptible Host	17
	2.2.1.2.3.2. Age	18
	2.2.1.2.3.3. Environmental factors	18
	2.2.1.2.3.4. Other factors	18

	2.2.2. Anaplasmosis	19
	2.2.2.1. Etiology	19
	2.2.2.2. Epidemiology	19
	2.2.2.1. Geographical occurrence	19
	2.2.2.2. Transmission	20
	2.2.2.3. Susceptible Host	20
	2.2.2.4. Risk factors	20
	2.2.2.4.1. Age	20
	2.2.2.5. Other factors	21
	2.2.3. Theileriosis	21
	2.2.3.1. Etiology	21
	2.2.3.2 Epidemiology	21
	2.2.3.2.1. Geographical occurrence	21
	2.2.3.2.2. Transmission	22
	2.2.3.2.3. Susceptible Host	22
	2.2.4. Diagnoses of Haemoprotozoan diseases	22
	2.2.5. Prevalence of haemoprotozoan diseases in Bangladesh	23
	2.2.6. Prevalence of haemoprotozoan diseases in other countries	24
3	MATERIALS AND METHODS	26-32
	3.1. Description of study areas	26
	3.2. Study period	26
	3.3. Selection of animals and Survey Design	26
	3.3.1. Target animals	26
	3.3.2. Selection of age groups	26
	3.3.3. Target sampling	26
	3.4. Sample collection and preservation	27
	3.5. Examination of samples	27
		27
	3.5.1. Blood Smears Examination	27
	3.5.1. Blood Smears Examination3.5.2. Fecal samples Examination	27 27
	3.5.2. Fecal samples Examination	27
	3.5.2. Fecal samples Examination3.5.3. Morphological Identification of Tick	27 28

	3.6.2. Amplification of gene by Polymerase chain reaction	29
	3.6.3. Gel Electrophoresis	30
	3.7. Purification of PCR amplicons	30
	3.8. DNA sequencing and phylogenetic analysis	30
	3.9. Statistical Analysis	31-32
4	RESULTS	33-45
	4.1. Prevalence of gastrointestinal parasites on the basis of	33
	microscopic identification	
	4.1.1. Overall prevalence of gastrointestinal parasites	33
	4.1.2. Seasonal prevalence of gastrointestinal parasites	34
	4.1.3. Age specific prevalence of gastrointestinal parasites	35-36
	4.1.4. Sex specific prevalence of gastrointestinal parasites	37
	4.2. Prevalence of haemoprotozoan diseases on the basis of	38
	microscopic identification	
	4.2.1. Overall prevalence of haemoprotozoan diseases	38
	4.2.2. Seasonal prevalence of haemoprotozoan diseases	38-39
	4.2.3. Age specific prevalence of haemoprotozoan diseases	40
	4.2.4. Sex-Specific prevalence of haemoprotozoan diseases	40
	4.3. Microscopic identification of ticks	41
	4.4. Molecular identification of blood protozoa	42
	4.5. DNA sequencing	42
	4.6. Results of nucleotides sequence alignment	43
	4.6.1.Multiple sequence alignment of Babesia isolates with	43
	others from other regions	
	4.6.2. Multiple sequence alignment of Anaplasma isolates with	44
	others from other regions	
	4.6.3. Multiple sequence alignment of Theleria isolates with	44
	others from other regions	
	4.7. Phylogenetic analysis of the Babesia, Anaplasma and	45-49
	Theileria isolates	
5	DISCUSSION	53-62
	5.1. Prevalence of gastrointestinal parasites on the basis of	53
	microscopic identification	

5.5. Phylogenetic analysis of the Babesia, Anaplasma and	62-63
tick sample by PCR	
5.4.1. Detection of haemoprotozoan parasites from blood and	61
5.4. Molecular characterization of blood protozoa	61
5.3. Microscopic identification of ticks	60
5.2.4. Sex-Specific prevalence of haemoprotozoan diseases	60
5.2.3. Age specific prevalence of haemoprotozoan diseases	59
5.2.2. Seasonal prevalence of haemoprotozoan diseases	59
5.2.1. Overall prevalence of haemoprotozoan diseases	
microscopic identification	57-59
5.2. Prevalence of haemoprotozoan diseases on the basis of	57
5.1.4. Sex specific prevalence of gastrointestinal parasites	57
5.1.3. Age specific prevalence of gastrointestinal parasites	56
5.1.2. Seasonal prevalence of gastrointestinal parasites	55
5.1.1. Overall prevalence of gastrointestinal parasites	53-55

List of Tables

Table	Topics	Page
No.		no.
Table 1	Primer pairs used for the detection of <i>Theileria</i> , <i>Anaplasma</i> and	30
	Babesia from blood and tick sample	
Table 2	Overall prevalence of gastrointestinal parasites in goats and	33
	sheep	
Table 3	Seasonal prevalence of gastrointestinal parasites in goats and	35
	sheep	
Table 4	Age specific prevalence of gastrointestinal parasites in goats and	36
	sheep	
Table 5	Sex specific prevalence of gastrointestinal parasites in goats and	37
	sheep	
Table 6	Overall prevalence of haemoprotozoan diseases in goats and	38
	sheep	
Table 7	Seasonal prevalence of haemoprotozoan diseases in goats and	39
	sheep (Microscopic)	
Table 8	Age specific prevalence of haemoprotozoan diseases in goats	40
	and sheep (Microscopic)	
Table 9	Sex-Specific prevalence of haemoprotozoan diseases in goats	41
	and sheep (Microscopic)	
Table 10	Prevalence of ticks in goats and sheep	41
Table 11	Results of Babesia, Anaplasma and Theileria species identified	43
	by BLASTn analysis using 18S rRNA, 16S rRNA and 18SSU	
	rRNA sequences of the isolates from goat and sheep in	
	Khagrachari, Bangladesh	

List of Figures

Fig.	Topics	Page
No.		no.
Fig.1	Prevalence of gastrointestinal parasite in goats and sheep in different areas	34
Fig. 2	Prevalence of haemoprotozoan infection in goats and sheep in different areas	39
Fig. 3	A multiple sequence alignment of <i>18S rRNA</i> gene fragments for comparison of <i>Babesia sp</i> and <i>Babesia ovis</i> isolates isolated from goat and sheep	43
Fig. 4	A multiple sequence alignment of <i>16S rRNA</i> gene fragments for comparison of <i>Anaplasma bovis</i> and <i>Anaplasma phagocytophilum</i> isolates isolated from goat and sheep	44
Fig. 5	A multiple sequence alignment of <i>18SSU rRNA</i> gene fragments for comparison of <i>Theileria lewenshuni</i> isolates isolated from goat and sheep	45
Fig. 6	Phylogenetic analysis based on partial <i>18S rRNA</i> gene sequences of the <i>Babesia</i> sp	47
Fig. 7	Phylogenetic analysis based on partial <i>16S rRNA</i> gene sequences of the <i>Anaplasma</i> sp	48
Fig. 8	Phylogenetic analysis based on the partial <i>18SSU rRNA</i> gene sequence of the <i>Theileria</i> sp	49
Fig. 9	Eggs of Gastrointestinal Parasites	50
Fig. 10	Blood smear showing both <i>Babesia sp</i> (arrowhead) and <i>Theileria sp</i> (arrow) in a goat, Giemsa stain; 100X objective	51
Fig. 11	Blood smear showing <i>Anaplasma marginale</i> (arrow) in a goat, Giemsa stain; 100X objective	51
Fig. 12	Agarose gel electrophoresis of amplified PCR products obtained from Babesia sp	51
Fig. 13	Agarose gel electrophoresis of amplified PCR products obtained from Anaplasma sp	52
Fig. 14	Agarose gel electrophoresis of amplified PCR products obtained from Theileria sp	52

ABSTRACT

Gastrointestinal parasitism and haemoparasitism in small ruminants are known to impose substantial economic burdens on owners. A cross sectional study was conducted to investigate the prevalence of gastrointestinal parasites and haemoparasites of small ruminants from three unions of Khagrachari district, namely Panchori, Golabari and Sadar. The fecal samples, blood samples and tick samples were collected from a total of 279 goats (97) and sheep (182) from study areas. All the specimens were subjected to microscopic examination technique first then blood samples (118) and tick samples (12) were examined by polymerase chain reaction for the detection of haemoparasites. Selected positive samples (9) were sent for sequencing and then phylogenetic analysis was done using sequenced data. The overall prevalence of gastrointestinal parasitic infection was found 55.67% (54) and 63.19% (115) in goats and sheep, respectively. The prevalence of parasites was variable with *Fasciola* sp. (27.84%), *Strongyloides* sp. (15.38%), Trichostrongylus sp. (14.84%), Paramphistomum sp. (9.89%), Trichuris sp. (8.24%) and Oesophagostomum sp. (6.04%). Overall haemoprotozoan infections were 42.27% and 40.11% in goats and sheep, respectively. The prevalence of *Babesia* sp., Anaplasma sp. and Theileria sp. were detected (38.64%, 29.73%), (38.64%, 28.38%) and (25.00%, 17.57%) in goats and sheep respectively by polymerase chain reaction. Parasitic ova and haemoparasitic infection rate in male and female exhibited no significant variations (p>0.05) between them. The infection was significantly higher in adult than young. Seasonal variation was found between winter and summer season. Haemoparasites are more prevalent in summer but opposite observation was found in case of gastrointestinal parasites. Two types of ticks were identified where Boophilus sp. is more prevalent than Haemophysalis sp. in both goats and sheep. Babesia sp. is identified from extracted DNA of Haemophysalis sp. tick. Finally, the random sequencing of isolates from Babesia sp., Anaplasma sp. and Theileria sp. revealed Babesia ovis, Anaplasma bovis, Anaplasma phagocytophilum and Theileria lewenshuni from goat and sheep and phylogenetic analysis prove the transmission of Babesia ovis though Haemophysalis sp. tick. Further investigation is necessary for a structured surveillance to investigate more variances of them to formulate effective control measures.

Key words: Gastrointestinal parasites, Goat, Haemoparasites, Hilly areas, Ticks, PCR, Phylogenetic analysis, Sheep.