

DETERMINATION OF PHYTOPLANKTON SINKING RATE IN NORTHERN BAY OF BENGAL: COMPARATIVE STUDY OF SEASONAL CARBON ABSORPTION

Mishu Acharjee

Roll No.: 0119/17 Registration No.: 716 Session: 2019-2020

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Marine Bioresource Science

> Department of Marine Bioresource Science Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University Chattogram 4225, Bangladesh

April, 2021

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Mishu Acharjee

April, 2021

DETERMINATION OF PHYTOPLANKTON SINKING RATE IN NORTHERN BAY OF BENGAL: COMPARATIVE STUDY OF SEASONAL CARBON ABSORPTION

Roll No.: 0119/17 Registration No.: 716 Session: 2019-2020

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

•••••••

Prof. DR. Omar Faruk Miazi Supervisor Avijit Talukder Co-supervisor

.....

.....

Dr. Mohammad Sadequr Rahman Khan

Chairman of the Examination Committee

Department of Marine Bioresource Science Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh

April, 2021

Dedícated

To

My Beloved Parents And

Elder Brother

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
		NO.
	AUTHORIZATION	ii
	LIST OF TABLES	viii
	LIST OF FIGURES	ix-x
	LIST OF APPENDICES	xi
	LIST OF ABBREVIATIONS	xii
	ABSTRACTS	xiii
1	INTRODUCTION	01-06
	1.1 Background	1-4
	1.2 Statement of the problem	4
	1.3 Research Queries	4
	1.4 Significance of the study	4
	1.5 Objectives of the research work	5
	1.6 Thesis Roadmap	5
	1.7 Restraints features of the study	5-6
2	REVIEW OF LITERATURE	7-11
3	MATERIALS AND METHODS	12-22
	3.1 Research extend	12
	3.2 Sampling incidences and premeditated parameters:	13
	3.2.1. Water collection for SETCOL and parameter testing	13
	3.3. Analysis of bio chemical parameters	14
	3.3.1. Analysis of physic-chemical water quality parameters	14
	3.3.1.1 Total Suspended Solid (TSS)	14
	3.3.1.2 Nitrite-nitrogen (NO ₂ -N)	15
	3.3.1.3 Phosphate-Phosphorus (PO ₄ -P)	16
	3.3.1.4 Silicate-Silicon (SiO ₃ -Si)	16
	3.4 SETCOL	17

	3.5 Chlorophyll-a measurement	18
	3.6 Phytoplankton sinking rate measurement	19
	3.7 Qualitative and quantitative estimations of plankton	20
	3.8 Carbon flux determination	21
	3.8.1 Total carbon estimation in each cell and a specific depth	22
	3.9 Data Analysis	22
4	RESULTS	23-39
	4.1 Physic-chemical parameters	23
	4.1.1 Temperature	23
	4.1.2 Water pH	24
	4.1.2 Water salinity	24
	4.1.4 Total Dissolve Solid (TDS) and Total Suspended	25
	Solid (TSS)	
	4.1.5 Nutrients (NO ₂ -N, PO ₄ -P and SiO ₃ -Si)	26-27
	4.1.6 Chlorophyll-a	27
	4.2 Phytoplankton Sinking Rate	28
	4.3 Total Carbon	29
	4.4 Carbon flux	30
	4.5 Phytoplankton composition and abundance	30
	4.6 Pearson correlation among the factors	35
	4.6.1 Depth wise PCA of physic-chemical parameters	35
	4.6.2 Station wise PCA of physic-chemical parameters	37
	4.6.3 Season wise PCA of physic-chemical parameters	40
5	DISCUSSION	41-45
	5.1 SETCOL method-it's applicability in field use	41
	5.2 Potential uses and activities of the study	42
	5.3 Phytoplankton abundance and parameters effect	43
	5.4 Phytoplankton sinking rate and associated factors	44
	5.5 Carbon flux	44
	5.6 PCA discussion among depth, station and season	45
6	CONCLUSION	46

7	RECOMMENDATION AND FUTURE PERSPECTIVES	47
	REFERENCES	48-51
	APPENDICES	52-53

LIST OF TABLES

TABLE	TITLE	PAGE
NO.		NO.
1.	Mean ± SD value of three stations and two seasons (BM=Bashbaria Monsoon, BW=Bashbaria Winter, PM=Patenga Monsoon, PW=Patenga Winter, TM=Teknaf Monsoon and TW=Teknaf Winter)	33
2.	Pearson correlation among the variables	35

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		NO.
1.	Sampling locations in three stations	12
2.	Sample collection by Nansen water sampler	13
3.	Phytoplankton sample collection by plankton net	14
4.	SETCOL Bottle	17
5.	Chlrophyll-a estimation	19
6.	Phytoplankton counting and identification	21
7.	Temperature fluctuation among 3 stations	29
8.	pH fluctuation among 3 stations	24
9.	Salinity fluctuation among 3 stations	25
10.	TDS fluctuation among 3 stations	25
11.	Nutrients fluctuation among 3 stations	26
12	Chl-a fluctuation among 3 stations	27
13	Phytoplankton Sinking Rate fluctuation among 3 stations	28
14	TC fluctuation among 3 stations	29
15	Carbon Flux fluctuation among 3 stations	29
16	Phytoplankton abundance fluctuation among 3 stations	30
17	Phytoplankton abundance fluctuation among 3 stations	31

18	Some phytoplankton found during study period	31
19	Average and SD value comparison between two factors	32
20	PC 1 and PC 2(depth)	34
21	PC 3 and PC 4(depth)	36
22	PC 1 and PC 2(station)	36
23	PC 3 and PC 4(station)	37
24	PC 1 and PC 2(season)	38
25	PC 3 and PC 4 (season)	40

LIST OF APPENDICES

FIGURE	TITLE	PAGE
NO.		NO.
A	Table of pairwise comparison of sinking rate	52
В	A book of cell volume measurement	53

LIST OF ABBREVIATION

SETCOL	Setting Column
DO	Dissolve Oxygen
Sig.	Significance
ppm	Parts Per Million
m/d	Meter per day
mg C/m^-2d-1	Milligram carbon per square meter per day
et al	And his associates
Min-max	Minimum-Maximum
%	Percentage
NS	No Significance difference
SD	Standard Deviation
MS	Master of Science
μg/L	Microgram Per Liter
g/L	Gram per liter
psu	Practical Salinity Unit

ABSTRACTS

Seasonal carbon flux via "Biological pump" associated with phytoplankton sinking rate were measured conducting this research during monsoon((August 2019) and winter (January 2019). It was done in the Northern east part of Bay of Bengal included three stations (Teknaf, Patenga and Bashbaria). Sinking rate was determined by homogeneous sample method SETCOL. Phytoplankton community was dominant by Bacillariophyceae, Dinophyceae and Chlorophyceae and ten dominant species. The average value found in Bashbaria was 2.62 ± 0.28 m/d (monsoon) and 1.89 ± 0.48 m/d (winter), in Patenga was 2.30 \pm 0.15 m/d (monsoon) and 2.56 \pm 0.57 m/d (winter), in Teknaf was 2.40 ± 0.06 m/d (monsoon) and 2.33 ± 0.09 m/d (winter).No significant correlation were found between phytoplankton sinking rate and most of the environmental parameters. During this study average total c arbon flux was varied from 5.69 \pm 0.61 to 3.99 \pm 1.02 mg C/m⁻²d⁻¹ in Bashbaria, 9.07 \pm 0.61 to 8.24 \pm 1.84 mg C/m⁻²d⁻¹ in patenga and 19.20 \pm 2.66 to 14.69 \pm 1.37 mg C/m⁻²d⁻¹ in Teknaf during monsoon and winter chlorophyll-a and Total carbon showed strong correlation with carbon flux. Two way ANOVA results Showed that variations in Carbon flux and phytoplankton sinking rate among 3 stations and 2 seasons and depth were significant (p<0.05) and PCA showed that there was a close correlation among Carbon flux, Chl-a and Total carbon but no correlation with sinking rateThis study provides an understanding the seasonal carbon export in the water column by dominant marine phytoplankton with an association of phytoplankton sinking. Teknaf coast is the prime contributor of daily carbon export from surface to the bottom among three stations and during monsoon this contribution is higher than winter Because of higher phytoplankton abundance than the other two stations.

Keywords: sinking rate, carbon flux, phytoplankton structure, carbon sequestration