

MORPHOLOGICAL APPROACH TO THE IDENTIFICATION OF Eleutheronema tetradactylum IN CHATTOGRAM COAST, BANGLADESH

Dipta Kumar Paul

Roll No.: 0119/18

Registration No.: 717

Session: 2019-2020

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Marine Bioresource Science

Department of Marine Bioresource Science
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

APRIL 2021

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Dipta Kumar Paul APRIL 2021

MORPHOLOGICAL APPROACH TO THE IDENTIFICATION OF Eleutheronema tetradactylum IN CHATTOGRAM COAST, BANGLADESH

Dipta Kumar Paul

Roll No.: 0119/18 Registration No.: 717 Session: 2019-2020

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

DR. Omar Faruk Miazi Avijit Talukder
Supervisor Co-supervisor

-----Dr. Mohammad Sadegur Rahman Khan

Chairman of the Examination Committee

Department of Marine Bioresource Science
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University

APRIL 2021

Chattogram-4225, Bangladesh

ACKNOWLEDGEMENTS

All the praises and thanks to the Almighty, most gracious, most merciful, most benign who has enabled him to pursue the study in fisheries science successfully and to submit the thesis for the degree of Master of Science in Marine Bioresource Science and also pay gratitude to the Almighty for enabling and giving strengths to complete research work as well as thesis within due course of time.

The author expresses his gratitude and indebtedness to Vice-Chancellor, **Professor Dr. Goutam Buddha Das** and Dean, **Professor Dr. Mohammad Nurul Absar Khan**from the bottom of his heart for their immense administrative support to complete his research work.

The author expresses his deepest sense of gratitude and sincere appreciation to his honorable teacher and research supervisor, **DR. Omar Faruk Miazi**, Professor and Head, Department of Genetics and Animal Breeding, CVASU, Chattogram for his unfailing support, authoritative guidance, constructive criticism, advice and continuous motivation.

The author also sincerely expresses his gratitude to his co-supervisor, Avijit Talukder, Assistant Professor, Department of Marine Bioresource Science, CVASU, Chattogram for his valuable guidance, intellectual suggestions, knowledge, patience, and time to teach him to be more confident person that he is going to use in work world.

The author expresses his thanks to **Dr. Mohammad Sadequr Rahman Khan**, Assistant Professor and Head, Department of Marine Bioresource Science, CVASU, Chattogram for his valuable and constructive suggestions during the research work.

The author expresses his sincere appreciation to Ms. Sumi Akter & Mr. Abrar Shakil, Assistant Professor, Department of Marine Bioresource Science, CVASU, Chattogram for her constructive guidelines and valuable suggestions in the research content writing.

Finally the author expresses his heartfelt gratitude to his beloved parents Dilip Kumar Paul and Rupali Rani Paul for selfless love, blessings, care, dedicated efforts, valuable prayers, continuous support during the academic life.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
		NO.
	AUTHORIZATION	ii
	ACKNOWLEDGEMENTS	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	LIST OF APPENDICES	ix
	LIST OF ABBREVIATIONS	x-xi
	ABSTRACTS	xii
1	INTRODUCTION	01-04
	1.1 Background of the study	01
	1.2 Objectives of the study	04
2	REVIEW OF LITERATURE	05-08
3	MATERIALS AND METHODS	09-15
	3.1 Study area	09
	3.2 Collection of samples	10
	3.3 Sample transportation	11
	3.4 Laboratory analysis	12
	3.4.1 Measurement of morphometric characteristics	12
	3.4.2 Measurement of meristic characteristics	13
	3.4.3 Statistical analysis	14
	3.5 Formula development	14
	3.6 Final identification	14
	3.7 Documentation	14
	3.8 Preservation	15
4	RESULTS	16-25
	4.1 Analysis of meristic counts	16
	4.2 Analysis of morphometric counts	17
	4.2.1 Correlation	18
	4.2.2 Regression	18
	4.2.3 Cluster analysis	20

	4.2.4 Univariate analysis (ANOVA)	21
	4.3 Principal component analysis (PCA)	23
5	DISCUSSION	26-30
	5.1 Variation of meristic counts	26
	5.2 Variation of morphometric counts	26
	5.3 Identification of principle components	29
6	CONCLUSION	31
7	RECOMMENDATION AND FUTURE PERSPECTIVES	32
	REFERENCES	33-39
	APPENDICES	40-45
	BRIEF BIOGRAPHY OF THE AUTHOR	46

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1.	General morphometric characters and their descriptions used for the analysis	13
2.	A) Mean and standard deviation of meristic counts (D1= First dorsal fin rays, D2= Second dorsal fin rays, P1= Pectoral fin rays, P2= Pelvic fin rays, A= Anal fin rays, C= Caudal fin rays)	16
	B) Mean and Standard deviation of morphometric characteristics	17
3.	Correlation among samples of morphometric measurements from three different stations. Degree of significance were presented as **p<0.01.	18
4.	Univariate statistics (ANOVA) among samples of <i>Eleutheronema tetradactylum</i> from nine morphometric measurements from three different habitats. Degree of significance were presented as *p<0.05.	21
5.	Pooled within-groups correlations between discriminating variables and discriminant functions in case of general morphometric characteristics.	22
6.	Showing classification results of canonical discriminant function based on all morphometric measurement classification results	22
7.	Component loadings of the first three principal components derived from PCA for the morphometric and meristic measurements of <i>Eleutheronema tetradactylum</i> from three different stations.	25

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.	Map of sampling area (sampling station 1: Patenga, Chattogram; sampling station 2: Kattoli coast, Chattogram; sampling station 3: Cox's Bazar)	10
2.	Collection of samples (a. Cox's Bazar; b. Cox's Bazar; c. Patenga; d. Kattoli coast)	11
3.	Sample transportation (a. Filled icebox with ice; b. Fish in the fish market; c. Preserving fish; d. Fish in the laboratory)	11
4.	Laboratory analysis (a. Mouth pattern observation; b. Estimation of forked length and weight)	12
5.	Overview of different morphometric indices of Eleutheronema tetradactylum	12
6.	General indications of different meristic characters observed in <i>Eleutheronema tetradactylum</i>	13
7.	Documentation (a. Sample with its species name; b. Portable photo lab)	15
8.	Morphological measurements expressed as percentage of total length.	17
9.	Regression line of (A-H) length on total length (A=Fork, B=Head, C=Pre-orbital, D=Pre-dorsal, E=Pre-pectoral, F=Pre-pelvic, G=Pre-anal, H=weight)	19
10.	Dendrogram showing the month wise similarity of various morphometric measurements	20
11.	Canonical discriminant functions for morphometric characters of <i>Eleutheronema tetradactylum</i> collected from the patenga, kattoli and cox's bazar coast.	23
12.	Scree plot showed the first three principal components had greater variation	24

LIST OF APPENDICES

APPENDIX	TITLE	PAGE NO.
NO.		
A.	Mean and standard deviation of morphometric	40
	characteristics	
B.	Group statistics for morphometric characters	40
C.	Tests of equality of group means	41
D.	Eigenvalues	41
E.	Wilks' lambda	41
F.	Standardized canonical discriminant function	41
	coefficients	
G.	Structure matrix	42
H.	Functions at group centroids	42
I.	Classification function coefficients	42
J.	Classification results	43
K.	KMO and bartlett's test	43
L.	Total variance explained for morphometric and	43
	meristic characters	
M.	Component matrixa for morphometric and meristic	44
	characters	
N.	Rotated component matrixa for morphometric and	44
	meristic characters	
O.	Component transformation matrix	45
P.	Component score coefficient matrix	45

LIST OF ABBREVIATIONS

SL	Standard length
TL	Total length
FL	Fork Length
HL	Head Length
POL	Pre-orbital Length
PDL	Pre-dorsal fin length
PVL	Pre-Pelvic fin length
PPL	Pre-Pectoral fin length
PAL	Pre-anal length
KG	Kilogram
G	Gram
MG	Milligram
DOF	Department of fisheries
FAO	Food and agriculture organization
RAPD	Random amplification of polymorphic DNA
RFLP	Restriction fragment length polymorphism
BFDC	Bangladesh fisheries development corporation
PCA	Principle component analysis
MT	Metric ton
FY	Fishing year
KM	Kilometer
ID	Identification
MM	Millimeter

${f E}$	East
N	North
ST	Station
WT	Weight
ANOVA	Analysis of variance
%	Percent
DFA	Discriminant function analysis
CVASU	Chattogram veterinary and animal sciences university

ABSTRACT

Morphological characters are generally significant in the identification and scientific of fishes. Unique morphological characters enable better categorization identifications, ensure enhanced perpetuations of resources and management strategies. The morphometric and meristic variations in Fourfinger threadfin (Eleutheronema tetradactylum) was investigated to assess possible differences between separate unit stocks and monthly variation within the species throughout ten months from three different regions (Patenga, Kattoli and Cox's Bazar) of Chattogram coast, Bangladesh. Nine morphometric and six meristic characters were examined. Correlation showed a statistically significant linear relationship among morphometric characters. Regression explained, 51.1% to 98.2% variation in different morphometric characters with total length predicted by the linear relationship. Dendrogram from cluster analysis revealed that, the monthly morphometric measurements had changed significantly. Univariate ANOVA as well as Discriminant Function Analysis (DFA) pretended significant differences in only one (pre-pelvic length) morphometric measurements among the three stocks where all data were adjusted. For morphometric measurements, the first Discriminant Functions (DF) resolved 85.0% and the second DF accounted for 15.0% group variability and together they explained 100% of the total among group variability. The canonical discriminant functions in DFA marked that E. tetradactylum populations were similar from the fish samples of three different stations. Principle Component Analysis (PCA) asserted that the first three principal components (PC1, PC2 and PC3) had eigenvalues greater than 1 and explained 83.17% of the variation in the data where the first (PC1) principal components (nine morphometric measurements) accounted for 62.17%. The current study suggested that the utilization of morphometric characters to create dependable data for stock separation of E, tetradactylum. The discoveries of the study would fill in as primary information of stock management and enable efficient management strategies for the particular supplies of threadfin populaces to make its fishery sustainable and create suitable protection plans in the not-so-distant future.

Key words: Morphometric, Meristic, Threadfin, *Eleutheronema tetradactylum*, Variation, Chattogram.