

# ASSESSING THE CRITICAL THERMAL TOLERANCE AND PHYSIOLOGICAL STRESS OF *Mystus gulio* UNDER HYPOXIC AND NORMOXIC CONDITIONS

Haphsa Khanom

Roll No.: 0124/02 Registration No.: 1481 Session: 2023–2024

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fish Biology and Biotechnology

> Department of Fish Biology and Biotechnology Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > June 2025

#### Authorization

I affirm that this thesis is wholly my own original creation. I permit Chattogram Veterinary and Animal Sciences University (CVASU) to distribute this thesis to individuals or entities for the purpose of academic research. Moreover, I allow CVASU to duplicate this thesis, either in its entirety or in sections, via photocopying or other methods, as requested by any individual or organization for academic purposes. Additionally, I confirm that the digital copy of this thesis submitted to the CVASU Library is an authentic and precise representation of the printed version, to the extent permitted by existing technology.

The author

June 2025

## ASSESSING THE CRITICAL THERMAL TOLERANCE AND PHYSIOLOGICAL STRESS OF *Mystus gulio* UNDER HYPOXIC AND NORMOXIC CONDITIONS

Haphsa Khanom

Roll No.: 0124/02 Registration No.: 1481 Session: 2023–2024

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made

.....

Dr. Md. Mahiuddin Zahangir Supervisor Prof. Dr. Mohammed Nurul Absar Khan

.....

**Co-supervisor** 

••••••

Dr. Md. Mahiuddin Zahangir

Chairman of the Examination Committee

Department of Fish Biology and Biotechnology

**Faculty of Fisheries** 

Chattogram Veterinary and Animal Sciences University

Khulshi, Chattogram-4225, Bangladesh

June 2025

#### Acknowledgment

I am profoundly thankful to the Almighty for providing me with the resilience, determination, and patience to successfully complete my Master of Science (MS) degree in Fish Biology and Biotechnology and my thesis.

I extend my heartfelt gratitude to my MS supervisor, **Dr. Md. Mahiuddin Zahangir**, Associate Professor and Head, Department of Fish Biology and Biotechnology at Chattogram Veterinary and Animal Sciences University, for his unwavering support, expert mentorship, insightful feedback, and continuous encouragement, which were pivotal to my success.

I am sincerely grateful to my MS co-supervisor, **Professor Dr. Mohammed Nurul Absar Khan**, Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for his invaluable guidance and support.

My deep appreciation goes to **Mrs. Azmaien Naziat**, Lecturer, Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, for her steadfast support, which greatly contributed to my development as a confident and skilled researcher.

I am also thankful to **Mrs. Shifat Ara Noor**, Lecturer in the Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, for her consistent encouragement and support.

I am fortunate to recognize the invaluable assistance and companionship of my fellow researchers, **Shaharier Ahmed**, **Md. Jobran Mia** and **Md. Shamim Rahman**, whose kindness and support during my research were deeply appreciated.

Finally, I am immensely grateful to my parents Md. Khalilur Rahaman, Senior Teacher, Govt. Muslim High School, Chattogram and Sayeda Kausar Akter and my younger brother Hozaifa Bin Khalil, for their boundless support, blessings, and sacrifices, which have been my pillar of strength and inspiration throughout this journey.

The Author June 2025

### **Table of Contents**

| Chapter | Title                                                          | Page no. |
|---------|----------------------------------------------------------------|----------|
|         | Authorization                                                  | ii       |
|         | Signature page                                                 | iii      |
|         | Acknowledgment                                                 | iv       |
|         | Table of Contents                                              | v-vii    |
|         | List of Plates                                                 | viii     |
|         | List of Figures                                                | ix-x     |
|         | List of Tables                                                 | xi       |
|         | Abstract                                                       | xii      |
| 1       | Introduction                                                   | 1-6      |
|         | 1.1 Background                                                 | 1-5      |
|         | 1.2 Objectives of the study                                    | 6        |
| 2       | Review of Literature                                           | 7–18     |
|         | 2.1 Global climate change and its impact on                    | 7-8      |
|         | aquatic ecosystems                                             |          |
|         | 2.2 Relevance to climate change and aquaculture                | 8-9      |
|         | 2.3 Thermal tolerance in fish                                  | 9-11     |
|         | 2.3.1 Methodologies for assessing thermal tolerance            | 9–10     |
|         | 2.3.2 Species-specific thermal tolerance                       | 10-11    |
|         | 2.4 The role of dissolved oxygen (DO) in growth and metabolism | 11       |
|         | 2.5 Oxygen requirement for different fish species              | 12       |
|         | 2.6 Hypoxia and its effects in fish                            | 12-15    |
|         | 2.6.1 Behavioral adaptation of fish to hypoxia                 | 12       |
|         | 2.6.2 Physiological and biochemical responses to hypoxia       | 13       |

|   | 2.6.3 Hormonal and stress response to hypoxia                                                                       | 13-14 |
|---|---------------------------------------------------------------------------------------------------------------------|-------|
|   | 2.6.4 Impact of hypoxia on immune function                                                                          | 14    |
|   | 2.6.5 Effects of hypoxia on growth performance of fish                                                              | 14    |
|   | 2.6.6 Effects of hypoxia on respirometry                                                                            | 14-15 |
|   | 2.7 Synergistic effects of temperature and hypoxia on fish physiology                                               | 15-16 |
|   | 2.8 Mystus gulio                                                                                                    | 16-18 |
|   | 2.9 Research gap                                                                                                    | 18    |
| 3 | Materials and Methods                                                                                               | 19–27 |
|   | 3.1 Study area                                                                                                      | 19    |
|   | 3.2 Experimental fish                                                                                               | 19–20 |
|   | 3.3 Experimental design                                                                                             | 20-21 |
|   | 3.4 Oxygen consumption at CTmax and CTmin                                                                           | 21-22 |
|   | 3.5 Measurement of hemato-biochemical parameters                                                                    | 22–24 |
|   | 3.6 Cellular and nuclear abnormalities of erythrocytes                                                              | 24–25 |
|   | 3.7 Recovery of <i>M. gulio</i> from CTmax and CTmin                                                                | 26    |
|   | 3.8 Measurement of water quality parameters                                                                         | 27    |
|   | 3.9 Statistical analysis                                                                                            | 27    |
| 4 | Results                                                                                                             | 28-37 |
|   | 4.1 Critical thermal tolerance (CTmax and<br>CTmin) of <i>Mystus gulio</i> under normoxic and<br>hypoxic conditions | 28–29 |
|   | 4.2 Oxygen saturation at CTmax and CTmin<br>under normoxia and hypoxia                                              | 29–30 |

|   | 4.3 Oxygen consumption rate at CTmax and              | 30-31 |
|---|-------------------------------------------------------|-------|
|   | CTmin under normoxia and hypoxia                      |       |
|   | 4.4 Opercular respiratory rate at CTmax and           | 31-32 |
|   | CTmin under normoxia and hypoxia                      |       |
|   | 4.5 Hematobiochemical changes at CTmax and            | 32-33 |
|   | CTmin under normoxia and hypoxia                      |       |
|   | 4.6 Cellular and nuclear abnormalities of             | 33-35 |
|   | erythrocytes at CTmax and CTmin under                 |       |
|   | normoxia and hypoxia                                  |       |
|   | 4.7 Recovery time of <i>Mystus gulio</i> at CTmax and | 36    |
|   | CTmin                                                 |       |
|   | 4.8 Changes in water quality parameters at            | 37    |
|   | CTmax and CTmin under normoxia and hypoxia            |       |
| 5 | Discussion                                            | 38–44 |
| 6 | Conclusions                                           | 45    |
| 7 | Recommendations                                       | 46    |
|   | References                                            | 47–74 |
|   | Brief Biography of the Author                         | 75    |
|   |                                                       |       |

| List o | of Plates |
|--------|-----------|
|--------|-----------|

| Plate no. | Title                                               | Page no. |
|-----------|-----------------------------------------------------|----------|
| 1         | Study area                                          | 19       |
| 2         | Mystus gulio                                        | 20       |
| 3         | Experimental set up                                 | 21       |
| 4         | Initial data collection                             | 22       |
| 5         | Measuring hemato-biochemical parameters             | 23       |
| 6         | Counting blood cells (RBC and WBC) under microscope | 24       |
| 7         | Blood smear preparation                             | 25       |
| 8         | Measurement of water quality parameters             | 26       |

## List of Figures

| Figure no. | Title                                                                                                                                                                                                                                                                                                    | Page no. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1          | Temperature tolerance (A) CTmax and (B) CTmin of <i>Mystus gulio</i> under normoxia and hypoxia. Values with different alphabetical superscripts differ significantly (p < 0.05) between treatment groups. All values are expressed as mean $\pm$ SD (n=8).                                              | 28       |
| 2          | Oxygen saturation (%) at (A) CTmax and (B) CTmin of <i>Mystus gulio</i> under normoxia and hypoxia. Values with different alphabetical superscripts differ significantly ( $p < 0.05$ ) between treatment groups. All values are expressed as mean $\pm$ SD (n=8).                                       | 29       |
| 3          | Oxygen consumption rate (O <sub>2</sub> /Kg/hr) at (A) CTmax and<br>(B) CTmin of <i>Mystus gulio</i> under normoxia and hypoxia.<br>Values with different alphabetical superscripts differ<br>significantly ( $p < 0.05$ ) between treatment groups. All<br>values are expressed as mean $\pm$ SD (n=8). | 30       |
| 4          | Opercular respiratory rate (OCR, beats/min) at (A) CTmax and (B) CTmin of <i>Mystus gulio</i> under normoxia and hypoxia. Values with different alphabetical superscripts differ significantly ( $p < 0.05$ ) between treatment groups. All values are expressed as mean $\pm$ SD (n=8).                 | 31       |
| 5          | Erythrocytic cellular abnormalities of <i>Mystus gulio</i> under<br>normoxia and hypoxia; a) regular cells; b) spindle; c) tear-<br>drop shaped; d) elongated; e) fusion; f) twin.                                                                                                                       | 34       |
| 6          | Erythrocytic nuclear abnormalities of <i>Mystus gulio</i> under<br>normoxia and hypoxia; a) regular cells; b) binuclei; c)<br>notched nuclei; d) nuclear degeneration; e) micronucleus;<br>f) karyopyknosis.                                                                                             | 35       |

| 7 | Recovery time of Mystus gulio at (A) CTmax and (B) | 36 |
|---|----------------------------------------------------|----|
|   | CTmin under normoxia and hypoxia. All values are   |    |
|   | expressed as mean $\pm$ SD (n=8).                  |    |

### List of Tables

| Table no. | Title                                                                                                                                                                      | Page no. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1         | Changes in hemato-biochemical parameters during the determination of temperature tolerance of <i>Mystus gulio</i> under normoxia and hypoxia conditions at CTmax and CTmin |          |
| 2         | Cellular abnormalities of erythrocytes during the determination of temperature tolerance of <i>Mystus gulio</i> under normoxia and hypoxia at CTmax and CTmin              | 34       |
| 3         | Nuclear abnormalities of erythrocytes during the determination of temperature tolerance of <i>Mystus gulio</i> under normoxia and hypoxia CTmax and CTmin                  |          |
| 4         | Changes in water quality parameters during the determination of temperature tolerance of <i>Mystus gulio</i> under normoxia and hypoxia conditions CTmax and CTmin         | 37       |

#### Abstract

Understanding critical thermal tolerance and physiological stress responses of fish is crucial for assessing their resilience to environmental changes. This study evaluated the critical thermal maximum (CTmax) and minimum (CTmin) under normoxic (with oxygen supply) and hypoxic (without oxygen supply) conditions in Mystus gulio, a commercially important climate-prone fish from the Bay of Bengal. Under normoxia, the CTmax and CTmin were recorded as  $41.8 \pm 0.24$  °C and  $11.6 \pm 0.33$  °C, respectively, while under hypoxia, critical thermal tolerance was  $36.9 \pm 3.44$  °C and  $13.5 \pm 0.36$  °C, respectively. Oxygen saturation in *Mystus gulio* at CTmax and CTmin was significantly reduced (p < 0.05) under hypoxia compared to normoxia and starting point. Oxygen consumption rates (OCR) and opercular respiratory rates rose significantly at CTmax under hypoxia. Hemato-biochemical parameters revealed notable changes, having significantly lowered levels of hemoglobin (Hb) and red blood cell (RBC) counts while the level of glucose (Glu), cholesterol (Chl) and white blood cell (WBC) counts increased significantly at hypoxic conditions in both CTmax and CTmin. Erythrocytic cellular and nuclear abnormalities were more prevalent under hypoxia in both CTmax and CTmin. Water quality parameters also fluctuated with temperature changes. Dissolved oxygen (DO) levels decreased notably at CTmax under hypoxia, while free CO<sub>2</sub> levels showed opposite trend. Mystus gulio recovered successfully from immediate before CTmax and CTmin when supplementing oxygen and stopped temperature increment. These findings demonstrate the reduced thermal tolerance of Mystus gulio under hypoxia and highlighted significant physiological and cellular stress responses, providing critical insights into the species' adaptive capacity under environmental stressors.

**Keywords**: Thermal tolerance, CTmax, CTmin, haematlogical parameters, erythocytic abnormalities, opercular respiratory rate, *Mystus gulio*