

REPRODUCTIVE BIOLOGY OF Acanthopagrus datnia COLLECTED FROM THE BAY OF BENGAL, BANGLADESH

Mitu Das

Roll No.: 0123/04 Registration No.: 1276 Session: 2023-2024

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fish Biology and Biotechnology

> Department of Fish Biology and Biotechnology Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh

Authorization

I hereby declare that I am the sole author of this thesis. Furthermore, I provide Chattogram Veterinary and Animal Sciences University (CVASU) with the permission to disseminate this thesis to other educational institutions or individuals for the purpose of scholarly research. Additionally, I grant CVASU the right to replicate the thesis, whether in total or part, through photocopying or any other means, as requested by other educational institutions or individuals engaged in scholarly research.

By appending my signature to this document, I validate that the digital version of this thesis, which has been submitted to the CVASU Library, accurately mirrors the printed edition of the thesis that I initially submitted.

Author

REPRODUCTIVE BIOLOGY OF Acanthopagrus datnia COLLECTED FROM THE BAY OF BENGAL, BANGLADESH

Mitu Das

Roll No.: 0123/04 Registration No.: 1276 Session: 2023-2024

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and all revisions required by the thesis examination committee have been made

Dr. Mohammad Sadagur Pahman Kh

Dr. Md. Mahiuddin Zahangir Supervisor

Dr. Mohammad Sadequr Rahman Khan

Co-supervisor

Dr. Md. Mahiuddin Zahangir Chairman of Examination Committee

Department of Fish Biology and Biotechnology

Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University

Khulshi, Chattogram-4225, Bangladesh

Acknowledgements

With gratitude and humility, all praise and thanks are offered to the Almighty, the most gracious, the most merciful, and the most benevolent. It is with his divine assistance that the author has successfully pursued his Master's course and submitted this thesis for the degree of Master of Science in Fish Biology and Biotechnology. The author remains indebted to the Almighty for the strength and capability granted to complete both the research work and the thesis within the stipulated timeframe. The author's profound gratitude is directed towards his esteemed teacher and research supervisor, Dr. Md. Mahiuddin Zahangir, Associate Professor and Head of the Department of Fish Biology and Biotechnology at Chattogram Veterinary and Animal Sciences University (CVASU). His guidance, constructive critique, advice, and consistent motivation have been invaluable. Without his unwavering support and encouragement, this work would not have reached its fruition.

I would like to express my gratitude to Shifat Ara Noor and Azmaien Naziat, Lecturer in the Department of Fish Biology and Biotechnology, for their co-operation, constant inspiration, warmth and indomitable guidance throughout the period of research work. Special recognition is extended to the co-supervisor, Dr. Mohammad Sadequr Rahman Khan, Associate Professor of the Department of Marine Bio-Resources Science, for his insightful guidance and invaluable suggestions in refining the research content. The author holds in high esteem the revered teachers and instructors at the Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for their impactful teaching and unending encouragement throughout the academic journey. The author acknowledges the collaborative effort of the lab technician Mrs. Priyanka Sharma, Senior lab attendant Md. Mojibor Rahman and all members of the Fish Biology and Biotechnology lab for their unwavering support during laboratory analyses. I also want to convey my genuine gratitude, real appreciation, and deep indebtedness to everyone who has helped me finish the research job, whether directly or indirectly.

Lastly, the author's heart brims with appreciation for his beloved parents, Anil Das and Rupna Das, for their boundless love, blessings, care, relentless efforts, earnest prayers, and unwavering support throughout his academic journey.

The Author

TABLE OF CONTENTS

SL. NO.	TITLE	PAGE NO.
	AUTHORIZATION	i
	SIGNATURE PAGE	ii
	ACKNOWLEDGEMENTS	iii
	LIST OF PLATES	vii
	LIST OF FIGURES	vii-viii
	LIST OF TABLES	ix
	LIST OF APPENDICES	ix
	LIST OF ABBREVIATIONS	Х
	ABSTRACT	xi
1	INTRODUCTION	1-4
	1.1 Aim and objectives of the study	4
2.	REVIEW OF LITERATURE	5-11
	2.1 Taxonomy and general features of Acanthopagrus	5
	datnia	
	2.2 Importance of Acanthopagrus datnia in the	5-6
	fisheries sector of Bangladesh	
	2.3 Insights into reproductive biology of	6-7
	Acanthopagrus sp.	
	2.4 Seasonal trends and factors influencing	7-8
	reproduction	
	2.5 Methods and indices for studying reproductive	8-9
	biology	
	2.6 Challenges in studying reproductive biology of	9-10
	Acanthopagrus sp.	
	2.7 Significance and necessity of research on	10-11
	reproductive biology in the Bay of Bengal	
3.	MATHERIALS AND METHODS	12-22
	3.1 Sampling sites and sample collection	12
	3.2 Recording the length-weight data and length-	12-13
	weight relationship determination	

condition factor (K_n)3.4 Collection of internal organs and determination of 14	-16
3.4 Collection of internal organs and determination of 14	-16
e e	- •
biological indices	
3.4.1 Determination of gonado-somatic index (GSI) 14	-15
and hepato-somatic index (HSI)	
3.4.2 Determination of the length at first maturity (L_m) 1	5
3.4.3 Determination of fecundity 1	5
3.4.4 Estimation of oocyte diameter 15	-16
3.5 Histological analysis of gonad 16	-21
3.5.1 Fixation 1	6
3.5.2 Dehydration 1	7
3.5.3 Cleaning	7
3.5.4 Infiltration 1	8
3.5.5 Embedding 1	8
3.5.6 Trimming 1	9
3.5.7 Sectioning	9
3.5.8 Transferring the ribbon into water bath	9
3.5.9 Attachment of the section on the slide and drying 2	20
3.5.10 Staining 2	20
3.5.11 Mounting 2	22
3.5.12 Microscopic observation of the tissue sections 2	2
3.6 Statistical analysis 2	2
RESULTS 23	-36
4.1 Hermaphroditism2	.3
4.2 Length-weight relationship23	-24
4.3 Condition factor and relative condition factor 2	.4
4.4 Fecundity2	25
4.5 Length at first sexual maturity (L_m) 26	-27
4.6 Hepatosomatic index 2	28
4.7 Gonadosomatic index 29	-30
4.8 Oocyte diameter 3	0
4.9 Gonadal maturation stages in females 31	-33

4.

	4.9.1 Immature stage	31
	4.9.2 Maturing stage	31
	4.9.3 Mature stage	32
	4.9.4. Ripe stage	32
	4.9.5. Spent/ regressing stage	33
	4.10 Gonadal maturity stages in male	33-36
	4.10.1 Immature	33
	4.10.2 Developing	34
	4.10.3 Pre-spawning	34
	4.10.4 Ripe	34-35
	4.10.5 Spawning	35
	4.10.6 Post-spawning	35-36
5.	DISCUSSION	37-43
	5.1 Length-weight relationship	37-38
	5.2 Condition factor (K) and relative condition factor	38-39
	(K_n)	
	5.3 Length at First Maturity (L_m)	39
	5.4 Fecundity	40
	5.5 Hepatosomatic index and gonadosomatic index	40-41
	5.6 Oocyte Diameter	41-42
	5.7 Reproductive season	42-43
6.	CONCLUSIONS	44
7.	RECOMMENDATIONS	45
	REFERENCES	46-52
	APPENDICES	53-60
	BRIEF BIOGRAPHY OF THE AUTHOR	61

SL. NO.	TITLE	PAGE NO.
1.	The Bengal Yellowfin Seabream, Acanthopagrus	3
	datnia	
2.	Study area map	12
3.	Length and weight measurement of A. datnia	13
4.	Dissection of fish	14
5.	Fish gonad separation	14
6.	Egg counting	16
7.	Measurement of oocyte diameter	16
8.	Histological stages: A. Fixation in Bouins solution,	16
	B. Preservation of gonad in ethanol	
9.	Histological stages: A. Dehydration, B. Cleaning,	19
	C. Infiltration, D. Embedding	
10.	Histological stages: A. Trimming, B. Sectioning,	20
	C. Transferring the ribbon into water bath	
11.	Histological stages: A. Attachment of the section on	22
	the Slide, B. Drying in slide warmer, C. Staining,	
	D. Stained slide, E. Mounting, F. Microscopic	
	observation	

LIST OF PLATES

LIST OF FIGURES

SL. NO.	TITLE	PAGE NO.
1.	Gonads with both oocytes and spermatocytes	23
2.	Power equation and log transformed length-weight	24
	relationship in Acanthopagrus datnia collected from	
	the Bay of Bengal, Bangladesh. A. Combine (n =	
	169), B. Male ($n = 96$), C. Female ($n = 73$)	
3.	Length at first maturity of Acanthopagrus datnia	26
	female from Bay of Bengal, Bangladesh. A) GSI (%)	
	Vs TL, B) MGSI (%) Vs TL, C) DI Vs TL	

4.	Length at first maturity of Acanthopagrus datnia male	27
	from Bay of Bengal, Bangladesh. A) GSI (%) Vs TL,	
	B) MGSI (%) Vs TL, C) DI Vs TL	
5.	Monthly variation of hepatosomatic index (HSI) of A.	28
	datnia. A. Male, B. Female. Different superscripts of	
	alphabet are statistically significant at $p < 0.05$	
6.	Monthly variation of gonadosomatic index (GSI) in A.	29
	datnia. A. Male, B. Female. Different superscripts of	
	alphabet are statistically significant at p< 0.05	
7.	Oocyte diameter (µm) and GSI of A. datnia collected	30
	from Bay of Bengal, Bangladesh	
8.	Ovarian maturation stages of A. datnia showing	31
	immature stage (A, B)	
9.	Ovarian maturation stages of A. datnia showing	31
	maturing stage (C, D)	
10.	Ovarian maturation stages of A. datnia showing the	32
	mature stage (E, F)	
11.	Ovarian maturation stages of A. datnia showing the	32
	Ripe stage (G, H)	
12.	Ovarian maturation stages of A. datnia showing the	33
	spent stage (I, J)	
13.	Testicular maturation stages of A. datnia showing the	33
	immature stage (A, B)	
14.	Testicular maturation stages of A. datnia showing the	34
	developing stage (C, D)	
15.	Testicular maturation stages of A. datnia showing the	34
	pre-spawning stage (E, F)	
16.	Testicular maturation stages of A. datnia showing the	35
	ripe stage (G, H)	
17.	Testicular maturation stages of A. datnia showing the	35
	spawning stage (I, J)	
18.	Testicular maturation stages of A. datnia showing the	36
	partially spent (K) and completely spent stage (L)	

SL. NO.	TITLES	PAGE NO.
1.	The dehydration schedule	17
2.	The cleaning schedule	17
3.	The infiltration schedule	18
4.	The staining schedule	20-21
5.	Condition factor and relative condition factor data of	25
	male and female A. datnia	

LIST OF TABLES

LIST OF APPENDICES

SL. NO.	TITLE	PAGE NO.
1.	Maximum and minimum value with obtained months	53
	of all parameters of Acanthopagrus datnia	
2.	Data of total length (TL), body weight (BW) of	53-59
	collected Acanthopagrus datnia.	
3.	Gonadosomatic index and hepatosomatic index data	59
	(Male and Female)	
4.	Oocyte diameter and GSI (Female) data	60

LIST OF ABBREVIATIONS

ABBREVIATION	FULL FORM
gm	Gram
cm	Centimeter
μm	Micrometer
ml	Milliliter
°C	Degree Celcius
FY	Fiscal Year
MT	Metric tons
LWR	Length-weight relationship
L_m	Length at first maturity
OD	Oocyte diameter
GSI	Gonadosomatic index
HSI	Hepatosomatic index
CN	Chromatin nucleous
РО	Perinuclear oocyte
Sz	Spermatozoa
GE	Germinal epithelium
Oo	Oogonia
OL	Ovarian lamellae
EPO	Early perinuclear oocyte
LPO	Late perinuclear oocyte
YV	Yolk vesicle
YG	Yolk granule
ZR	Zona radiata
At	Atresia
TL	Testicular lumen
Sg	Spermatogonia
Sc	Spermatocyte
St	Spermatid
RS	Residual sperm
TC	Testicular cavity

ABSTRACT

Studying the life-history traits and reproductive biology of commercially important species are important for successful conservation and management of fishery resources. Bengal yellowfin seabream, Acanthopagrus datnia, is a commercially important species from the Bay of Bengal, Bangladesh with scanty information on the reproductive biology and life history. A total of 169 samples, both male and female, were collected from January 2023 to July 2024. Biological parameters such as lengthweight relationship (LWR), condition factor (K), gonadosomatic index (GSI), hepatosomatic index (HSI), length at first maturity (L_m) , fecundity, oocyte diameter and gonadal histology were investigated to find out the overall life-history of the fish. Histological analysis revealed that this species is protandric hermaphrodite. The coefficient of regression 'b' was 2.88, 3.01 and 2.34 for all fishes (combined), males and females respectively showing the negative allometric growth pattern for the pooled and females, however isometric for males. Mean K value was always higher than 1 indicating the good condition of the fishes. Length at first maturity (L_m) was estimated 15.9–18.4 cm for males and 16.8–17.4 cm for females. Oocyte diameter ranged from 23.9–232.6 µm, lowest in August and highest in February having a moderate alignment with the GSI that peaked in February. Histological examination shows that the highest number of yolk granule stage in females and spermatozoa in males in February which indicates the spawning season in this month. Fecundity ranged from 33,005-1,38,330 eggs/females. This study is the first record of life-history characteristics of this hermaphrodite fish from the Bay of Bengal. Information gathered in this research work will be helpful for successful conservation and management in the Bay of Bengal.

Keywords: *Acanthopagrus datnia*, reproductive biology, length-weight relationship, condition factor, histology, GSI, oocyte diameter