

ASSESSMENT OF MICROPLASTIC POLLUTION AND PHYSICOCHEMICAL FEATURES IN THE SURFACE WATER AND SEDIMENT OF KAPTAI LAKE, BANGLADESH

Sadia Tahosin

Roll No: 0123/04 Registration No:1294 Session: 2023-2024

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

> Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > June 2024

AUTHORIZATION

I at this moment declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library is an accurate copy of the print thesis submitted within the limits of the technology available.

The Author

JUNE 2024

ASSESSMENT OF MICROPLASTIC POLLUTION AND PHYSICOCHEMICAL FEATURES IN THE SURFACE WATER AND SEDIMENT OF KAPTAI LAKE, BANGLADESH

Sadia Tahosin

Roll No.: 0123/04 Registration No.:1294 Session: 2023-2024

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made.

Dr. Sk. Ahmad Al Nahid

Mrs. Shahida Arfine Shimul

Supervisor

Co-supervisor

Mrs. Shahida Arfine Shimul Chairman of the Examination Committee

Department of Fisheries Resource Management FacultyofFisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

June 2024

ACKNOWLEDGEMENTS

All praises and gratitude to the Almighty Allah for granting her the ability, strength, and perseverance needed to complete her Master's course and submit this thesis on schedule for the Master of Science in Fisheries Resource Management degree.

The author expresses her deepest gratitude and indebtedness to **Dr. Sk Ahmad Al Nahid,** Professor and Dean of the Faculty of Fisheries at Chattogram Veterinary and Animal Sciences University (CVASU), for being an outstanding mentor and research supervisor. His leadership, constructive criticism, insightful advice, and consistent inspiration have been priceless.

The author also conveys her sincere appreciation to **Mrs. Shahida Arfine Shimul,** Assistant professor and head of the Department of Fisheries Resource Management, CVASU, her respected teacher and research co-supervisor, for her supportive nature, helpful advice, perceptive suggestions, and continuous guidance.

The author is grateful to **Taposh Kumar Chakraborty**, Assistant Professor of the Department of Environmental Science and Technology at Jashore University of Science and Technology, for his colossal help in methodology development. His unwavering support has been crucial in shaping the direction of this research.

Special recognition is extended to **Saifuddin Rana** and **Antar Sarkar**, Lecturers in the Department of Fisheries Resource Management, CVASU, for their insightful feedback, continuous support, and suggestions for improving the research content. The author expresses gratitude to Bokhteyar Hossain, the lab technician, and the Aquatic Ecology Laboratory team for their diligent cooperation in laboratory analyses.

Grateful acknowledgement is extended to Farjana Akter, Sinthia Chawdury, and Saykat Talukdar for their unwavering assistance during the study period. Finally, the author appreciates her loving parents and family members for their unbounded love, blessings, care, persistent efforts, heartfelt prayers, and steadfast support during his academic journey.

The Author

TABLE OF CONTENTS

SL.	CHAPTER TITLES	PAGE
		NO
	AUTHORIZATION	Ι
	SIGNATURE	II
	ACKNOWLEDGEMENTS	III
	LIST OF TABLES	VI
	LIST OF FIGURES	VI
	LIST OF APPENDICES	VII
	LIST OF ABBREVIATION	VII
	ABSTRACT	VIII
01	INTRODUCTION	1-4
	1.1 Significance of this study	
	1.2 Objectives of this study	
02	REVIEW OF LITERATURE	5-9
	2.1 Microplastic in marine environment	
	2.2 Microplastics in freshwater environment	
	2.3 Microplastics in riverine environment	
	2.4 Occurrence of microplastics in lake	
	2.5 Studies associated with microplastic pollution in Bangladesh	
03	METHODS AND MATERIALS	10-17
	3.1 Study area	
	3.2 Sampling protocol	
	3.3 Laboratory analysis	
	3.3.1 Wet sieving and drying	
	3.3.2 Density separation-I	
	3.3.3 Wet per oxidation (WPO)	
	3.3.4 Density separation-II	
	3.3.5 Filtration	
	3.3.6 Micro plastics type, shape, color, size identification	
	3.3.7 Microplastics size measurement	
	3.4 Determination of microplastics abundance	

	3.5 Polymer type identification	
	3.6 Quality assurance and quality control	
	3.7 Risk assessment of microplastics	
	3.8 Statistical analysis	
04	RESULT	18-29
	4.1 Variation of abundance of microplastics among different sites	
	4.2 Physiochemical characteristics of microplastics	
	4.2.1 Type features	
	4.2.2 Shape features	
	4.2.3 Microplastics color	
	4.2.4 Size of microplastics	
	4.2.5 Polymer composition	
	4.3 Risk assessment of Kaptai Lake	
05	DISCUSSION	30-33
	5.1 Variation of microplastics abundance among different sites	
	5.2 Type features	
	5.3 Shape features	
	5.4 Color features	
	5.5 Size features	
	5.6 Polymer Composition	
	5.7 Risk assessment	
06	CONCLUSION	34
07	RECOMMENDATION	35
08	REFERENCES	36-49
09	APPENDICES	50-51
10	BRIEF BIOGRAPHY OF THE AUTHOR	52

SL	TITLES	PAGE NO
01	GPS coordinates	10-11
02	Pollution load index (PLI), hazard index (H), and pollution risk	17
	index (PRI)	
03	Polymer composition of microplastics in water and soil samples	28-29

LIST OF TABLES

LIST OF FIGURES

SL	TITLES	PAGE NO
01	Map of study area	11
02	Abundance of MPs in surface water	18
03	Abundance of MPs in sediment	18
04	Proportions of identified MPs types in surface water	19
05	Proportions of identified MPs types in sediment	20
06	Percentage of different MPs shapes in Water	20
07	Percentage of different MPs shapes in soil	21
08	Proportions of identified MPs shape in water samples	22
09	Percentage of different MPs shape in water samples	22
10	Proportions of identified MPs shape in soil samples	23
11	Percentage of different MPs shape in soil samples	23
12	Proportions of identified MPs color in surface water	24
13	Proportions of identified MPs color in soil sample	25
14	Percentage of different MPs color in (A) Water (B) Soil	25
15	Percentage of different MPs size in water samples	26
16	Percentage of different MPs size in sediment samples	26
17	Proportions of identified MPs types in surface water	27
18	Proportions of identified MPs types in soil samples	28
19	Pollution Load Index (PLI) of water	29
20	Pollution Load Index (PLI) of soil samples	29

List of Appendices

SL	TITLES	PAGE NO
01	One way ANOVA of abundance of microplastic in water	50
	among three sites (Tourist, Non tourist, Market)	
02	One way ANOVA of abundance of microplastic in sediment	50
	among three sites (Tourist, Non tourist, Market)	

List of Plates

SL	TITLES	PAGE NO
01	Identified different colors of microplastic	51
02	Identified different types of microplastic (A) Film (B) Fragment	51

ABBREVIATION	FULL FORM
MP	Microplastic
МТ	Metric Ton
Kg	Kilogram
g	Gram
mg	Milligram
mL	Milliliter
m ³	Meter Cube
SPSS	Statistical Package for the Social Sciences
Km	Kilometer
%	Percent

List of Abbreviation

Abstract

Microplastics (MPs) have emerged as a significant worldwide contaminant due to its extensive dispersion and possible harm to ecosystems. However, the occurrence of MPs in lakes is relatively unrevealed in comparison to other aquatic bodies. This study was conducted to evaluate the abundance, distribution, attributes, and risk of MPs in Kaptai Lake during January to August, 2023. A total of 36 samples (18 water and 18 sediment) were collected from 18 sampling sites MP particles were extracted by density separation, enumerated and characterized by a stereomicroscope and imaging software and analysis of polymer was performed by Fourier Transform Infrared (FT-IR) spectroscopy. The highest and lowest abundance of MPs both in water and sediment samples were detected at tourist (water = 5.69 ± 2.42 items/m³, sediment = 43.06 ± 7.92 items/kg) and non-tourist spots (water = 2.69 ± 0.62 items/m³, sediment = 23.34 ± 5.27 items/kg), respectively. Fragment was the dominent type of MPs in water (43.16%) and sediment (47.01%). MPs with an irregular shape prevailed at 48.5% and 48.33% in water and sediment, respectively. Transparent (29.5%) and black color (28.13%) were dominated correspondingly in water and sediment. In both samples, MPs between 300 to $<500 \mu m$ was the dominating size categories, accounted for 46.38% and 50.64% of water and sediment. Six polymer compositions were found, polystyrene (12%) was only present in the water sample. Polyethylene was found in the highest proportion at both water (24%) and sediment (26%) samples. Moreover, the risk assessment indicated that both samples in all three categories were polluted with MPs (pollution load index, PLI> 1; PLIzone = 2.03 and 2.06 for water and sediment samples, respectively. This study laid the foundation for future research and management and control of MPs pollution by providing new insights on the status of MPs in the water and sediment of Kaptai Lake

Key words: Microplastic, Pollution, Kaptai Lake, Risk assessment