

HEAVY METAL POLLUTION IN WATER, SEDIMENT, AND FISH OF THE KAPTAI LAKE: ASSESSMENT OF CONCENTRATION, ENVIRONMENTAL IMPACT AND HEALTH IMPLICATIONS

Farjana Akter

Roll No.: 0123/03 Registration No.: 1293 Session: 2023-2024

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

Department of Fisheries Resource Management, Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE 2024

AUTHORIZATION

I at this moment declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library is an accurate copy of the print thesis submitted within the limits of the technology available.

> The Author JUNE 2024

HEAVY METAL POLLUTION IN WATER, SEDIMENT, AND FISH OF THE KAPTAI LAKE: ASSESSMENT OF CONCENTRATION, ENVIRONMENTAL IMPACT AND HEALTH IMPLICATIONS

Farjana Akter

Roll No.: 0123/03 Registration No.: 1293 Session: 2023-2024

This is to certify that we have examined the above Master's thesis and havefound that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made

Dr. Sk. Ahmad Al Nahid Supervisor Mrs. Shahida Arfine Shimul Co-supervisor

Mrs. Shahida Arfine Shimul Chairman of the Examination Committee

Department of Fisheries Resource ManagementFaculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE 2024

ACKNOWLEDGEMENTS

All praises and gratitude to the Almighty Allah Subhanahuwata'ala for granting her the ability, strength, and perseverance needed to complete her Master's course and submit this thesis on schedule for the Master of Science in Fisheries Resource Management degree.

The author expresses her deepest gratitude and indebtedness to **Dr. Sk Ahmad Al Nahid,** Professor and Dean of the Faculty of Fisheries at Chattogram Veterinary and Animal Sciences University (CVASU), for being an outstanding mentor and research supervisor. His leadership, constructive criticism, insightful advice, and consistent inspiration have been priceless.

The author also conveys her sincere appreciation to Mrs. **Shahida Arfine Shimul**, Assistant professor and head of the Department of Fisheries Resource Management, CVASU, her respected teacher and research co-supervisor, for her supportive nature, helpful advice, perceptive suggestions, and continuous guidance.

The author is grateful to **Taposh Kumar Chakraborty**, Assistant Professor of the Department of Environmental Science and Technology at Jashore University of Science and Technology, for his colossal help in methodology development. His unwavering support has been crucial in shaping the direction of this research.

Special recognition is extended to **Saifuddin Rana** and **Antar Sarkar**, Lecturers in the Department of Fisheries Resource Management, CVASU, for their insightful feedback, continuous support, and suggestions for improving the research content.

The author expresses gratitude to Bokhteyar Hossain, the lab technician, and the Aquatic Ecology Laboratory team for their diligent cooperation in laboratory analyses.

Grateful acknowledgement is extended to **Sadia Tahosin, Sinthia Chawdury**, and **Saykat Taluktdar** for their unwavering assistance during the study period. Finally, the author appreciates her loving parents and family members for their unbounded love, blessings, care, persistent efforts, heartfelt prayers, and steadfast support during his academic journey

The Author

TABLE OF CONTENTS

SL	CHAPTER TITLES	PAGE
NO		
	AUTHORIZATION	I
	SIGNATURE	II
	ACKNOWLEDGEMENTS	III
	LIST OF TABLES	VI
	LIST OF FIGURES	VI
	LIST OF PLATES	VII
	LIST OF APPENDICES	VII
	LIST OF ABBREVIATION	VII
	ABSTRACT	VII
01	INTRODUCTION	1-5
	1.1 Background of this study	
	1.2 Significance of this study	
	1.3 Objectives of this study	
02	REVIEW OF LITERATURE	6-12
	2.1 Heavy metals in water	
	2.2 Heavy metals in sediment	
	2.3 Heavy metals in fish	
	2.4 Heavy metal pollution: Bangladesh	
	2.5 Impact of heavy metal pollution	
03	MATERIALS AND METHODS	13-20
	3.1 Study area	
	3.2 Sampling Procedure	
	3.3 Weighing and drying	
	3.4 Determination of heavy metal contents in the samples	
	3.5 Sample digestion methods	
	3.5.1 Surface water	
	3.5.2 Sediment	
	3.5.2 Fish sample	

3.6 Ecological risk assessment

3.7 Potential ecological risk assessment

3.8 Human health risk assessment from heavy metal contaminated

fish

- 3.8.1 Estimated daily intake
- 3.8.2 Carcinogenic risk
- 3.9 Non Carcinogenic risk assessment
 - 3.9.1 Target hazard quotient
 - 3.9.2 Hazard index
- 3.10 Statistical analysis

04 RESULT

21-31

32-27

- 4.1 Heavy metals analysis in surface water
 - 4.1.1 Mean concentration
 - 4.1.2 Ecological risk assessment
 - 4.1.3 Pollution load index
 - 4.1.Health risk assessment of surface water
- 4.2 Heavy metals analysis in sediment
 - 4.2.1 Mean concentration
 - 4.2.2 Ecological risk assessment
 - 4.2.3 Pollution load index
 - 4.2.4 Ecological risk
 - 4.2.5 Health risk assessment of aquatic life from sediment
- 4.3 Heavy metal analysis in fish
 - 4.3.1 Mean concentration
 - 4.3.2 Estimated daily intake
 - 4.3.3 Target hazard quotient

4.3.4 Carcinogenic risk 05 DISCUSSION

- - 5.1 Heavy metals in water
 - 5.2 Heavy metals in sediment
 - 5.3 Heavy metals in fish

06	CONCLUSION	38
07	RECOMMENDATION AND FUTURE PERSPECTIVES	39
08	REFERENCES	40-54
09	APPENDICES	55-56
10	BIOGRAPHY	

LIST OF TABLES

SL	TITLES	PAGE
01	Interpretation of the degree of contamination based on contamination factor	17
02	Interpretation of the status of heavy metal pollution based on the value of the pollution load index	17
)3	Interpretation of the ecological risk based on the contamination factor	18
04	Cancer slope factor for heavy metals	19
05	Reference dose for heavy metals	20
06	Interpretation of pollution load index in water	22
07	Comparison of the mean concentration of heavy metals with DWSB, TRV, Aquatic life standard guideline	23
08	Interpretation of pollution load index in sediment	25
)9	Interpretation of ecological risk in sediment	25
10	Comparison of the mean concentration of sediment with TRV, TEL, PEL, SEL	26
11	The concentration of heavy metals in studied fish species with maximum allowable concentration mg/kg	28
12	Estimated daily intake (mg/kg) of heavy metals in fish species	29
13	Target hazard quotient of heavy metals in fish species	30
14	Carcinogenic risk from heavy metals in fish species	31

LIST OF FIGURES

SL	TITLES	PAGE
01	Map of study area of Kaptai Lake, Rangamati 13	
02	Comparison Mean concentration of heavy metals in water among	21
	three site	
03	Contamination factor of water among three sites	22
04	Comparison of mean concentration of sediment among three sites	24
05	Contamination factor of water among three sites	25

LIST OF PLATES

SL	TITLE	PAGE
NO		
01	Collected fish species	14
02	Preparation of samples	15

LIST OF APPENDICES

SL No	TITLE	PAGE
01	One-way ANOVA of heavy metal concentration in water among three sites (Tourist, Non-tourist, Market)	55
02	One-way ANOVA of heavy metal concentration in sediment among three sites (Tourist, Non-tourist, Market)	56

ABBREVIATION	FULL FORM
mg	Milligram
Kg	Kilogram
\mathbf{L}	Liter
CF	Contamination Factor
CSF	Cancer Slope Factor
SEL	Severe Effect Level
PEl	Probable Effect Level
TEL	Threshold Effect Level
TRV	Toxicity Reference Value
DWSB	Drinking water Standard Bangladesh
PLI	Pollution Load Index
As	Arsenic
Ni	Nickel
Cu	C0pper
Cd	Cadmium
Pb	Lead
Cr	Chromium

LIST OF ABBREVIATIONS

ABSTRACT

The presence and concentration of heavy metals from water, sediment, and eight selected fish species from Kaptai Lake were investigated. The sampling sites were categorized as Tourist (Shubholong Waterfall, Julonto Bridge, and Buddha Mondir), Non-tourist (Borokoler much, Chilar dam, Hazari Bazar), and Market (BFDC Fish Market, Shubholong Market, Reserve Market). The study was conducted from July to December 2023, and sampling was carried out on July 2023. The concentration of heavy metals in water (mg/L) sediment (mg/kg) and eight fish species on a dry weight (mg/kg) of Kaptai Lake were determined by Atomic-absorptionbasis spectrophotometer (AAS) (Model: AA-7000. SHIMADZU, Japan). Six heavy metals such as Arsenic (As), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Lead (Pb) and Copper (Cu) in sediment, water, and fish species were investigated from Kaptai Lake. No significant variation (P>0.05) in heavy metal concentration was found among the sites in sediment and water samples. The decreasing trend of the mean concentration of metals was observed in water (mg/L) as Cu>Cr>Ni> Cd> Pb>As and in sediment (mg/kg) Cr >Ni >Cu> Pb >As >Cd. The Cu, Cd, and Pd levels in water samples exceeded the safe drinking water limits, indicating that water from this river was unsafe for drinking and cooking. While in sediment, the concentration of Ni (mg/kg) was higher than PEL, TEL TRV, and Cd (mg/kg), and Cr (mg/kg) was higher than TEL and TRV, indicating adverse biological effects on the Kaptai Lake. The sediment's pollution load index (PLI>1) stated the advanced decline in sediment quality. The sum of average metal concentrations (Σ 6HM) followed the descending order of L. rohita (17.578) >G. chapra (15.031)> O.pabda (14.801) > L. calbasu (9.125)> P pangasius (7.616)>M. tengra (6.022)> S. aor (5.840), H.fossilis (5.55) mg/kg. Maximum allowable concentration was lower in all metals except Pb in eight species. A potential noncarcinogenic risk was indicated that the target hazard quotients (TTHQ) of all fish species exceeded the safe limit of 1.0. Furthermore, the target cancer risks (TR) of all metals were greater than the acceptable risk limit (10–4) in all fish species, indicating that their long-term consumption could potentially result in chronic cancer risk for adults.

Keywords: Kaptai Lake, Heavy metal, Water, Fish, Sediment