

REPRODUCTIVE FEATURES OF THE LONG WHISKER CATFISH (*Mystus gulio*) COLLECTED FROM SOUTHEAST COAST OF BANGLADESH

Golam Kibriya

Roll No: 0122/08 Registration No: 1108 Session: 2022-2023

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Marine Bioresource Science

> Department of Marine Bioresource Science Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > July 2024

Authorization

I hereby declare that I am the sole author of the thesis. I authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author July 2024

REPRODUCTIVE FEATURES OF THE LONG WHISKER CATFISH (*Mystus gulio*) COLLECTED FROM SOUTHEAST COAST OF BANGLADESH

Golam Kibriya

Roll No: 0122/08 Registration No: 1108 Session: 2022-2023

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made

Supervisor

Nayeema Ferdausy Hoque

Assistant Professor, Dept. of Marine Bioresource Science, CVASU

Co-supervisor

Dr. Md Asaduzzaman

Associate Professor & Head, Dept. of Marine Bioresource Science, CVASU,

Dr. Md Asaduzzaman Chairman of the Examination Committee

Department of Marine Bioresource Science Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JULY 2024

Acknowledgements

I am grateful to Allah, the Almighty, who has given me the courage, the ability, and the patience to finish my thesis for a Master's of Science (MS) in Marine Bioresource Science

First, I would like to express my heartfelt gratitude and respect to Prof. Dr. M. Nurul Absar Khan, former Dean, Faculty of Fisheries, CVASU, who established a Master's program in the Faculty of Fisheries and offered updated instruments and laboratories for any type of research.

With much delight, I would like to express my deepest sense of gratitude, sincere appreciation, profound regards, and immense indebtedness to my honorable teacher and research supervisor, Nayeema Ferdausy Hoque, Assistant Professor, Dept. of Marine Bioresource Science, CVASU, for allowing doing research and providing invaluable guidance and continuous support throughout this research. His dynamism, vision, sincerity, and motivation have deeply inspired me. Working and learning under his guidance was a great pleasure and joy. I am incredibly grateful to him and would also like to thank him for his friendly cooperation, empathy, and great sense of humor.

I feel proud to express my regard and immense gratitude to my co-supervisor Dr. Md Asaduzzaman, Associate Professor & Head, Dept. of Marine Bioresource Science, CVASU, for his kind cooperation and valuable suggestions, and constructive criticism in improving the quality of the research work.

I would like to offer my most profound appreciation, indebtedness, sincere appreciation, and deep regards to my honorable teacher Dr. Md Sadequr Rahman Khan Associate Professor and former Head, Dept. of Marine Bioresource Science, CVASU, for his scholastic guidance, cordial support, constant encouragement, valuable suggestions, punctuality, and constructive feedback criticism throughout this research work and during the writing up of the thesis. His guardianship, counsel, simplicity, and contribution will remain unforgettable memories forever.

Finally, I want to convey my heartfelt gratitude to my supportive friends, colleagues, and lab assistants at the Department of Marine Bioresource Science for their tireless efforts throughout the study. I'd also like to convey my sincere thanks, genuine appreciation, and profound debt of gratitude to everyone who has assisted me in completing the study project, whether directly or indirectly. Finally, I want to express my gratitude to my loving parents, elder sister, and younger brother for their unwavering support, inspiration, moral support, kindness and blessings, forbearance, and unending love in helping me finish this study. Thank you very much.

The Author

July 2024

List of Tables	VII
List of Appendix	VII
List of Images	VII
List of Figures	VIII
List of Plate	IX
Abbreviations	Х
Abstract	XI
INTRODUCTION	1
1.1 Background of the study	1-3
1.2 Research Objective	3
REVIEW OF LITERATURE	4
2.1 Length-weight relationship and growth pattern	4-6
2.2 Condition factor (K) and relative condition factor (Kn)	6-7
2.3 Gonado-somatic index (GSI) and oocyte diameter	7-8
2.4 Length at first sexual maturity (Lm)	8
2.5 Fecundity	8-9
2.6 Reproductive biology and spawning season	9
MATERIALS & METHODS	10
3.1 Sampling site and collection of samples	10
3.2 Determination of the length-weight relationship	11
3.3 Determination of condition factor (K) & relative condition factor (Kn)	11-12
3.4 Determination of gonado-somatic index (GSI)	12-13
3.5 Determination of length at first sexual maturity (Lm)	13
3.6 Determination of fecundity	13-14
3.7 Histological analysis of gonad	14-18
3.8 Data Analysis	18

Table of Contents

RESULT	19
4.1 Length-weight relationship and growth pattern	19-20
4.2 Condition factor (K) and relative condition factor (Kn)	20-21
4.3 Maximum And minimum Length Frequency distribution month wise	22
4.4 Sex Ratio	22-24
4.5 Gonado somatic index (GSI)	24-25
4.6 Length at first sexual maturity (Lm)	26-28
4.7 Fecundity	28-30
4.8 Gonadal maturation stages in females	30-35
4.9 Gonadal maturity stages in male	36-39

DISCUSSION	40
5.1 Length - weight relationship	40
5.2 Condition factor (K) and relative condition factor (Kn)	41
5.3 Length Frequency distribution and sex ratio	41
5.4 Size at sexual maturity	42-43
5.5 Fecundity	43
5.6 Gonado-somatic index, gonadal histology, and breeding periodicity	43-44
CONCLUSION	45
RECOMMENDATION AND FUTURE PERSPECTIVES	46
REFERENCES	47-53
APPENDIX	54-55

Table 1:	Dehydration schedule	15
Table 2:	Cleaning	16
Table 3:	Staining	17
Table 4:	Monthly condition factor and relative condition factor data for male and	
	female	22
Table 5:	Monthly fluctuations in the population of male and female <i>M. gulio</i> and	
	their sex ratio	23
Table 6:	Month -wise fecundity with total length and body weight	30

LIST OF TABLES

LIST OF APPENDICES

Appendice 1:	Gonado-somatic index (GSI) of <i>M. gulio</i>	54
Appendice 2:	Month-wise fecundity with total length and body weight	55

LIST OF IMAGES

Image 1:	Map of the study area	10
Image 2:	Sample collection and labelling	10
Image 3:	Recording of length-weight data of <i>M.gulio</i>	11
Image 4:	Collection of gonad after dissection	13
Image 5:	Counting of eggs in order to determine fecundity	14
Image 6:	Histological procedure	18

Figure 1:	The logarithmic relationship between the weight and total length of	
	Mystus gulio	19-20
Figure 2:	Condition factor and relative condition factor of <i>Mystus gulio</i>	21
Figure 3:	Distribution of the maximum and minimum lengths of <i>Mystus gulio</i>	22
Figure 4:	Monthly fluctuations and proportion of male and female <i>M. gulio</i>	23
Figure 5:	Gonado-somatic index (GSI) of <i>M. gulio</i>	24-25
Figure 6:	Length at first sexual maturity (Lm) calculated from the relationship	
	between gonado-somatic index (GSI%) and total length (A), modified	
	gonado-somatic index (MGSI%) with total length (B), and Dobriyal Index	
	(DI%) with total length (C) of female <i>M. gulio</i>	26-27
Figure 7:	The relationship between the following variables: A) Gonado-somatic	
	index, GSI (%) and total length; B) modified gonado-somatic index,	
	MGSI (%) and total length; and C) dobrival index and total length of	
	female <i>M. gulio</i>	27-28
Figure 8:	The relationship between fecundity and total length of M .	
	gulio	30
Figure 9:	The relationship between fecundity and body weight of M .	
	gulio	30

List of Figures

Plate 1:	Macroscopic developmental stages of female reproductive organ of	
	M.gulio	31
Plate 2:	Microscopic developmental stages of oogenesis in M.	
	gulio	32
Plate 3:	Ovarian maturation phases of <i>M. gulio</i> (pre-vitellogenic stage)	33
Plate 4:	Ovarian maturation phases of <i>M. gulio</i> (Early primary vitellogenic	
	stages)	33
Plate 5:	Ovarian maturation phases of M. gulio (advanced primary	
	vitellogenic stage)	34
Plate 6:	Ovarian maturation phases of M. gulio (Secondary vitellogenic	
	stage)	34
Plate 7:	Ovarian maturation phases of <i>M. gulio</i> (Ripe stage)	35
Plate 8:	Ovarian maturation phases of <i>M. gulio</i> (Spent/ regressing stage)	35
Plate 9:	Macroscopic developmental stages of male reproductive organ of	
	M.gulio	36
Plate10:	Testicular maturation stages of <i>M. gulio</i> (immature stage)	37
Plate 11:	Testicular maturation stages of M. gulio (developing (C) and pre-	
	spawning stage)	38
Plate12:	Testicular maturation stages of <i>M. gulio</i> (ripe stage)	38
Plate13:	Testicular maturation stages of <i>M. gulio</i> (Spawning stage)	39
Plate 14:	Testicular maturation stages of <i>M. gulio</i> (Spent stage)	39
L	1	

List of Plate

LIST OF ABBREVIATIONS

%	Percent
μm	Micrometer
BW	Body Weight
cm	Centimetre
DoF	Department of Fisheries
DI	Dobriyal Index
DPX	Dibutylphthalate Polystyrene Xylene (Resin-based slide mountant)
FAO	Food and Agriculture Organization
g	Gram
GDP	Gross Domestic Product
GSI	Gonado-somatic Index
ha	Hectare
HSI	Hepato-Somatic Index
Lm	Length at First Maturity
LWR	Length-Weight Relationship
MT	Metric Ton
oC	Degree Celsius
R2	Coefficient of Determination
SD	Standard Deviation
SL	Standard Length
TL	Total Length
UAE	United Arab Emirates
W	Weight
WGS84	World Geodetic System 1984

ABSTRACT

Life-history information is important for fish conservation, population expansion, and broodstock management of fish especially with high monetary value. Still, very little is known about the life-history and breeding biology of commercially significant catfish species (Mystus gulio) through studying histological observation of gonad in southeast coast of Bangladesh. Therefore, the objective of this research was to investigate the reproductive biology of the longwhiskered catfish, Mystus gulio, which was collected from coastal waterbodies around Chakaria from September 2021 to August 2022. A total of 350 individuals of the species Mystus gulio were selected at random from selected Gher and pond sources in Chakaria. The analysis of morphometric parameters showed that the exponent 'b' value of the total lengthweight relationship of *M. gulio* was 1.2871 for males, and 2.1968 for females suggesting negative allometric growth (b < 3). The monthly condition factor (K) values ranged from 0.87 to 2.622, with the highest value observed in September (2.62 ± 0.65) and the lowest value observed in August (0.88 \pm 0.085). The Relative Condition Factor (Kn) values ranged from 0.96 to 1.17, with the highest value observed in March (1.167 \pm 0.88) and the lowest value observed in September (0.96 ± 0.12). The total length ranges between 8.3 and 17.3 cm. Most of the females were between the size classes of 11.5 and 14.5 cm. The overall male and female sex ratio was 1:1.23. The length at first sexual maturity (Lm) for both sexes was 13.5 cm TL calculated through the gonado-somatic index, modified gonado-somatic index, and Dobriyal index. The fecundity was assessed by randomly collected gravid female fish samples. The number of eggs per individual ranged from 4200 to 45,589, with an average of 16,999 eggs. The gonado-somatic index (GSI) reached its peak in July for both males and females. Histological analysis also identified the existence of yolk granules in eggs at ripe stages of gonads in female and a quantity of fully developed spermatids in testes in the month of July. The findings of the research revealed that the peak breeding season of *M. gulio* is in July. This finding will serve as a baseline for conservation management and brood stock development in the southeast coastal area of Bangladesh.