

EFFECT OF DIFFERENT NITROGEN CONCENTRATIONS ON THE GROWTH PERFORMANCE AND PROXIMATE COMPOSITION OF Nannochloropsis sp.

Md. Shahadat Hossain

Roll No.: 0119/04 Registration No.: 694 Session: 2019-2020

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Aquaculture

> Department of Aquaculture Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > June 2020

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Md. Shahadat Hossain

June, 2020

EFFECT OF DIFFERENT NITROGEN CONCENTRATIONS ON THE GROWTH PERFORMANCE AND PROXIMATE COMPOSITION OF *Nannochloropsis* sp.

Md. Shahadat Hossain

Roll No.: 0119/04 Registration No.: 694 Session: 2019-2020

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Dr. Helena Khatoon Supervisor Mohammad Redwanur Rahman Co-supervisor

Joyshri Sarker Chairman of the Examination Committee

Department of Aquaculture Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE 2020

ACKNOWLEDGEMENTS

All the praises and thanks to the Almighty, most gracious, most merciful, most benign Allah who has enabled meto pursue the study in fisheriessuccessfully as well as help me at every way to submit the thesis for the degree of Master of Science (MS) in Aquaculture and also pay gratitude to the Almighty for enabling and giving strengths to complete research work as well as thesis within due course of time.

I am expressing my gratitude and respect to Vice-Chancellor, Professor Dr. Goutam Buddha Das and Dean, Professor Dr. Mohammad Nurul Absar Khan from the bottom of my heart for their immense administrative support to complete my research work.

I am expressing mydeepest gratitude and sincere appreciation to my honorable teacher and research supervisor, Dr. Helena Khatoon, Assistant Professor, Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram for herunfailing support, authoritative guidance, constructive criticism, advice and continuous motivation. It would never have been possible for meto take this work to completion without her incredible support and continuous encouragement. Her dynamism, vision and confidence inspired me and gave me confidence.

I am also sincerely expressing thanks to my co-supervisor Mohammad Redwanur Rahman, Assistant Professor, Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram for hisvaluable guidance, motivation, intellectual suggestions, knowledge, patience, and time to teach me to be more confident person that I am going to use in the work world.

I am also expressing my great appreciation to Dr. Sk Ahmad Al Nahid, Associate Professor, Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram for helping me to do activities in the laboratory of Fisheries Resource Management. His willingness to give his permission continue and use equipment of his laboratory is very much appreciated. I am also expressing my cordial thanks to Avijit Talukder, Assistant Professor, Department of Marine Bio-resource Science who helped me to use his department's laboratory by giving permission.

I am extremely glad to take opportunity to express my heartfelt thanks and gratitudeto myall other respected teachers of the Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram for their valuable teaching and continuous encouragement during the study period in fisheries.

I am also expressing my great appreciation to the Bangladesh Fisheries Research Institute (BFRI), for their funding on the microalgae project.

I would like to convey my special thanks to Mr. Tashrif Mahmud Minhaz, MS Fellow, Mr. Zahidul Islam, MS Fellow, Mr. Sanzib Kumar BARMAN, MS Fellow, Ms. Jinat Afruj, MS Fellow, Ms. Kafia Islam Amira, MS Fellow, CVASU, Ms. Foujia Jamal, MS Fellow, Chittagong University, Mohammad Ekramul Haque, Student, CVASU for helping me during research work.

I am very much grateful to lab technician Supria Biswas and lab attendant Eden Datta and also cordially thanks to all the staff members of the Aquaculture department for their cooperation during laboratory analysis.

Finally I am expressing my heartfelt gratitude to my beloved mother Mrs. Hurar Nahar Begum for her selfless love, blessings, care, dedicated efforts, valuable prayers, continuous support during the academic life.

Md. Shahadat Hossain

June, 2020

Contents	Page No.
Title Page	Ι
Authorization	II
Signature Page	III
Acknowledgement	IV-V
List of tables	VI-VIII
List of Figures	IX-X
List of Appendices	XI
List of Abbreviations	XII
Abstract	XIII
Chapter-1: Introduction	1-3
Chapter-2: Review of Literature	4-12
2.1. Nannochloropsis sp.	4
2.2. Importance of Nannochloropsis sp.	4-5
2.3. Growth Phases of Microalgae	5-6
2.4. Nutritional Value of Nannochloropsis sp.	6-7
2.5: Factors Affecting Microalgal Growth	8-9
2.5.1. Temperature	8
2.5.2. Salinity	8-9
2.5.3. Light	9
2.5.4. pH	9
2.6: Effect of Different Nutrients on the Growth of Microalgae	10-12
2.6.1. Phosphorus	10
2.6.2. Trace Metals	10-11
2.6.4. Nitrogen	11-12
Chapter-3: Materials and Methods	13-22
3.1. Culture and Maintenance of Nannochloropsis sp.	13
3.2. Purpose of the Growth Curve Experiment	13-14
3.3. Preparation of culture Media	14-16
3.3.1. Preparation of Natural Sea Water	14

Table of contents

3.3.2. Preparation of Conway Media1		
3.3.3. Main Mineral Stock Solution		
3.3.4. Trace Minerals Solution		
3.3.5. Vitamin Solution Preparation		
3.3.6. Modified potassium nitrate in Conway media solution preparation	16	
3.4. Experimental Design		
3.4.1. Growth Curve Experiment		
3.4.2. Analysis of Growth parameters		
3.4.2.1. Determination of Cell Count	17-18	
3.4.2.2. Specific Growth Rate (SGR)	18	
3.4.2.3. Cell Doubling Time (td)	18	
3.4.3. Culture of <i>Nannochloropsis</i> sp. using Different Nitrogen Concentration	19-20	
	10	
3.4.3.1. Phase-1	19	
3.4.3.2. Phase-2	19-20 20-22	
3.5. Proximate Composition Analysis		
3.5.1. Protein Analysis		
3.5.2. Lipid Analysis		
3.5.3. Carbohydrate Analysis	21-22	
3.6. Data Analysis	22	
Chapter-4: Results	23-33	
4.1. Growth Curve Experiment	23-26	
4.1.1 Mean Cell Density	23	
4.1.2 Cell Density	23-24	
4.1.4 Specific Growth Rate (SGR)	24-25	
4.1.5 Cell Doubling Time (td)	25-26	
4.2 Proximate Composition in Nannochloropsis sp.	26-31	
4.2.1 Protein Content	26-27	
4.2.2. Lipid Content	27-28	

4.2.3 Carbohydrate Content	
4.3. Color Variation of Nitrogen Depleted and Augmented Treatments	
Chapter-5: Discussion	34-37
5.1. <i>Nannochloropsis</i> sp. growth performance under different nitrogen concentration	32-33
5.2. <i>Nannochloropsis</i> sp. Proximate Composition under different nitrogen concentration	33-35
Chapter-6: Conclusions	36
Chapter-7: Future Prospects and Recommendations	37
References	38-44
Appendices	45-48
Appendix a: One-way Analysis of Variance examining the effect of nitrogen concentration on the protein content of <i>Nannochloropsis</i> sp.	
Appendix b: One-way Analysis of Variance examining the effect of	
nitrogen concentration on the lipid content of Nannochloropsis sp	
Appendix c: One-way Analysis of Variance examining the effect of nitrogen concentration on the carbohydrate content of <i>Nannochloropsis</i> sp.	47-48
Brief biography of the student	49

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1	Title of the Treatments	23
2	Specific Growth Rate(SGR) of <i>Nannochloropsis</i> sp. cultured in different nitrogen stress	31
3	Cell Doubling Time (td) of <i>Nannochloropsis</i> sp. cultured in different nitrogen stress	32

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1	Growth Curve of Microalgae	14
2	Conway Media (Solution a,b, and c)	15
3	Cell counting for growth curve using hemacytometer under light microscope	18
4	4 Cell density (cells/ml x 10 ⁶) of <i>Nannochloropsis</i> sp. in Conway medium	
5	Mean cell density $(x10^6 \text{ cells/mL})$ versus culture period (days) for <i>Nannochloropsis</i> sp. cultured in different nitrogen stress. Values are mean \pm standard error	23
6	Protein Content of <i>Nannochloropsis</i> sp. cultured in different nitrogen stress	24
7	Lipid content of <i>Nannochloropsis</i> sp. cultured in different nitrogen stress	28
8	Carbohydrate content of <i>Nannochloropsis</i> sp. cultured in different nitrogen	29
9	The color difference of <i>Nannochloropsis</i> sp. cultured in different nitrogen stress	31

LIST OF APPENDICES

APPENDIX TITLE PAGE NO. NO.

- a One-way Analysis of Variance examining the effect of 45 nitrogen concentration on the protein content of *Nannochloropsis* sp.
- b One-way Analysis of Variance examining the effect of 46 nitrogen concentration on the lipid content of *Nannochloropsis* sp.
- c One-way Analysis of Variance examining the effect of 47 nitrogen concentration on the lipid content of *Nannochloropsis* sp.

LIST OF ABBREVIATIONS

Acronym	Definition
sp.	Species
KNO ₃	Potassium Nitrate
g/L	Gram per liter
Cells/ml	Cells per milliliter
SGR	Specific Growth Rate
Td	Cell doubling time
Abs	Absorbance
Kcal	Kilocalorie
BFRI	Bangladesh Fisheries Research Institute
CVASU	Chattogram Veterinary and Animal Sciences University
Lab	Laboratory
FAO	Food and Agriculture Organization
PUFA	Poly Unsaturated Fatty Acid
DW	Dry Weight

ABSTRACT

Microalgae are widely recognized in the aquaculture industries as a source of protein and in the oil industries as a source of biodiesel. Nannochloropsis is a promising source of protein and lipid due to its higher growth rate and cellular chemical compositions. Hence, the purpose was to determine the effect of nitrogen concentrations on cell growth and proximate composition of Nannochloropsis sp. For the experiment, Nannochloropsis sp. was grown in 100 g/L KNO3 present in Conway medium as the control and in 50 g/L, 75 g/L, 125 g/L, and 150 g/L KNO3 present in Conway medium respectively to determine stress effects. The culture volume was 1.5 L each. The results showed that the growth of Nannochloropsis sp., in terms of cell density and specific growth rate (SGR)was significantly (p < 0.05) higher (73.65 x 10^{6}) (0.772×10⁶ cells/day) at high concentration of KNO₃ 150g/L compared to other concentration 50g/L (21.93×10^{6} cells/ml; 0.451×10^{6} cells/day), 75g/L ($20.93 \times$ ml x 10⁶ cells/ml; 0.491×10⁶ cells/day, 100g/L 29.03×10⁶ cells/ml; 0.525×10⁶ cells/day and 125 g/L 56.7 \times 10⁶ cells/ml; 0.739 \times 10⁶ cells/day) respectively. Protein content of Nannochloropsis sp. was significantly high (p < 0.05) at higher concentration of KNO₃ (54 % dry weight) followed by 50 g/L (35 % dry weight), 75 g/L (41 % dry weight,) 125 g/L (48 % dry weight) and 100 g/L KNO3 (47 % dry weight) respectively. On the other hand, lipid content (36% dry weight) was significantly higher (p < 0.05) at lower concentration of KNO₃125g/L KNO₃ to higher. In case of carbohydrate content there was no significant difference among the different stresses except the higher nitrogen stress (13% dry weight) of 150 g/L KNO₃. Therefore, the effects of nitrogen concentration have an effective approach to acquire protein, lipid as well as higher cell density.

Key words: Cell density, proximate composition, *Nannochloropsis*, conway media, KNO₃