

Development of fruit bar made from Wood Apple (Limonia acidissima) & Muskmelon (Cucumis melo) using different sweeteners and determination of its quality parameter.

Sadia Islam

Roll no: 0121/02

Registration no: 984

Session: January-June 2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Masters of Science in Applied Human Nutrition & Dietetics

Department of Applied Food Science and Nutrition
Faculty of Food Science and Technology
Chattogram Veterinary and Animal Sciences
UniversityChattogram- 4225, Bangladesh

July 2023

Authorization

I hereby assert that I am the sole author of the thesis. I give the Chattogram Veterinary

and Animal Sciences University (CVASU) permission to lend this thesis to other

organizations or persons for academic research. I also give the CVASU permission to

duplicate or otherwise reproduce the thesis, in whole or in part, at the request of other

organizations or individuals for academic research.

I, the undersigned and author of this work, hereby certify that the electronic copy of this

thesis submitted to the CVASU Library is an accurate copy of the printed thesis, within

the bounds of the technology already in use.

Sadia Islam

July 2023

ii

Development of fruit bar made from Wood Apple (Limonia acidissima) & Muskmelon (Cucumis melo) using different sweeteners and determination of its quality parameter.

Sadia Islam

Roll No: 01-21/02

Registration No: 984

Session: January-June 2021

This is to certify that we have examined the above masters thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee.

Supervisor

Nilufa Yeasmin

Associate Professor & Head

Department of Applied Food Science & Nutrition

Faculty of Food Science & Technology

Chairman of the Examination Committee,
Nilufa Yeasmin
Associate Professor

Department of Applied Food Science and Nutrition
Faculty of Food Science and Technology
Chattogram Veterinary and Animal Sciences University Chattogram-4225,
Bangladesh

PLAGIARISM VERIFICATION

Title of the Thesis: Development of mixed fruit bar made from Wood Apple (Limonia

acidissima) & Muskmelon (Cucumis melo) using different sweeteners and

determination of its quality parameter

Name of the student: Sadia Islam

Roll no.: 01-21/02

Registration no.: 984

Session: January-June, 2021

Department: Department of Applied Food Science and Nutrition

Faculty: Food Science and Technology

Supervisor: Nilufa Yeasmin, Associate professor & Head, Department of Applied Food

Science and Nutrition.

This is to report as per the check 21% of the content of the above thesis is stated to be

plagiarized and is covered/ not covered as per the plagiarism policy of the institution

issued from CASR, Chattogram Veterinary and Animal Sciences University, khulsi-

4225.

The thesis may/ may not be considered for the evaluation.

Nilufa Yeasmin

Associate Professor & Head

Department of Applied Food Science and Nutrition

Faculty of Food Science and Technology

Chattogram Veterinary and Animal Sciences University, Khulsi-4225

iv

DEDICATED TO MY BELOVED FAMILY & TEACHERS

Acknowledgements

First & foremost, I would like to express my gratitude to the —Almighty Allahl from my deepest sense of gratitude, whose blessing has enabled me to complete the thesis for the degree of Masters of Science (MSc.) in Applied Human Nutrition and Dietetics.

Dr. A.S.M Lutful Ahasan, Vice-Chancellor, Chattogram Veterinary and Animal Sciences University (CVASU), deserves special thanks for offering such study opportunities and facilities. **Nilufa Yeasmin** (Associate Professor & Head, Department of Applied Food Science and Nutrition, Faculty of Food Science & Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh) is my principal advisor and research supervisor, and I am appreciative of her help and emotional support. Her encouragement, compassion, constructive criticism, constant inspiration, and support helped me get beyond all of my research and thesis preparation's challenges. I am delighted to convey my gratitude and profound obligation to **Prof. Md. Ashraf Ali Biswas**, Dean, Faculty of Food Science and Technology, and thanks to each and every one of my esteemed teachers for their kind assistance, enlightening advice, and useful criticism over the course of my studies and thesis writing.

I'd like to express my gratitude and appreciation to the Ministry of Science and Technology of Bangladesh for providing me with a **National Science and Technology** (NST) Fellowship for the 2020-2021 academic years, as well as the Research and Extension of Chattogram Veterinary and Animal Sciences University, Bangladesh, for the financial assistance provided during my studies.I would like to express my sincere appreciation to my dear friends and well-wishers for their support, encouragement, and inspiration throughout my study. In addition, I would like to thank my parents and other family members for their everlasting love, patience, spiritual guidance, compassion, and blessings in helping me complete my studies.

The Author

July 2023

Table of Contents

	Chapter 1: Introduction	. 1
1.1	General feature	1
1.2	Aims & Objectives	3
	Chapter 2: Review of Literature	4
2.1	Wood apple (Limonia acidissima)	4
	2.1.1 Nutritional Value of Bael	5
	2.1.2Various proved therapeutic values of Wood-apple:	5
2.2	Muskmelon (Cucumis melo)	7
	2.2.1 Nutritional value of muskmelon	8
	2.2.2 Health benefits of muskmelon	9
2.3	Honey and Its application to processed fruit items	10
2.4	Sugar	.11
2.5	Date	.11
2.6	Citric Acid	.12
2.7	Starch	.12
2.8	Fruits bar	.13
2.9	Conclusion	.13
	Chapter 3: Materials and Methods	14
3.1	Study area:	14
3.2	Collection of samples:	14
3.3	Materials & Apparatus required	14
3.4	Experimental design	15
3.4	Preparation of fruit bar	17
3.5	Physicochemical analysis of fruits bar	18
	3.5.1 Total Soluble Solids	18
	3.5.2 Titrable Acidity	18

3.5.3 Determination of Vitamin C	19
3.6 Proximate analysis of fruits bar	20
3.6.1 Determination of moisture content	20
3.6.2 Determination of Ash content	20
3.6.3 Determination of protein	21
3.6.4 Determination of fat content	22
3.6.5 Determination of fiber content	23
3.6.6 Determination of total carbohydrates	23
3.6.7 Determination of energy content	24
3.7 Determination of mineral content:	24
3.7.1 Sample preperation	24
3.7.2 Calcium (Ca) determination	24
3.7.3 Potassium (K) determination	24
3.7.4 Magnesium (Mg) determination	25
3.7.5 Iron (Fe) determination	25
3.8 Antioxidant capacity determination	26
3.9 Microbial analysis	26
3.10 Sensory evaluation	29
3.11 Statistical analysis	29
CHAPTER 04: RESULTS	31
4.1 Physicochemical properties of fruits bar	31
4.1.1 pH , Acidity and TSS	31
4.2 Proximate analysis of fruits bar	32
4.3 Vitamin & mineral content of fruits bar	32
4.4 Antioxidant Capacity of fruit bar	33
4.5 Microbial analysis	33
4.6 Sensory evaluation	34

4.7 Cost analysis	34
Chapter 5 : Discussions	36
5.1 Physical & chemical properties of fruits bar	36
5.2 Nutritional composition of fruits bar	36
5.3 Vitamin & mineral content in fruits bar	37
5.4 Antioxidants capacity of fruits bar	38
5.5 Microbial analysis of fruits bar	38
5.6 Sensory evaluation	38
5.7 Moisture on drying rate of fruits bar	39
Chapter 6: Conclusion	40
Chapter 7: Recommendations and Future Perspectives	41
References	47
Appendix	48
Brief Biography	

List of Table

Table no.	Name of table	Page no.
Table 2.1	Nutritional Composition of Wood-apple	17
Table 2.2	Nutritional composition of Muskmelon	21
Table 3.1	Ingredients & composition of experimental bar	30
Table 4.1	Physicochemical analysis test result of fruit bar	44
Table 4.2	Proximate analysis of fruit bar	45
Table 4.3	Vitamin & mineral content of fruit bar	45
Table 4.4	Antioxidant content of fruit bar	46
Table 4.5	Microbial analysis of fruit bar	46
Table 4.6	Hedonic scale scoring test results	47
Table 4.7	Production cost analysis of fruit bar	47

List of Figures

Figure no.	Name of figure	Page no
Fig 2.1	Figure of Wood-apple	16
Fig 2.2	Figure of Muskmelon	20
Fig 3.1	Figure of study area	27
Fig 3.2	Figure of study design	29
Fig 3.3	Process flow sheet for the preparation of fruit bar	31

List of Abbreviation

& : And

AOAC : Association of Analytical Chemists

DPPH : 2, 2-diphenyl-1-picrylhydrazyl

EDTA : Ethyl di amine tetra acetic acid

CMC : Carboxymethyl cellulose

APM : Aspartame

GAE : Gallic Acid Equivalent

SDA : Saboraud dextrose agar

QE : Quercetin equivaletns

ANOVA : Analysis of variance

°B : Degree brix

°C : Degree celcius

TSS : Total soluble solids

CHO : Carbohydrate

etc : Et cetera

et al : Et alii / et alia

G : Gram

Cfu : Colony forming unit

PPM : Parts per million

Mg : Milligram

Kg : Kilogram

Abstract

Wood apple (Limonnia acidissima and muskmelon (Cucumis melo) both are highly nutritious fruits with lots of medicinal properties which are seasonally produced in our country. Due to blend taste and higher moisture content of muskmelon every year lots of fruits are wasted. In our country very little study has been conducted on the processing of muskmelon, wood-apple and products made from muskmelon and Wood-apple are hardly available in our market place. That's why current research is done to make a highly nutritious fruits bar to utilize this two common fruits of Bangladesh by using different sweetener. Fruit bar is the product prepared by blending fruit purees or pulp extracted from ripe pulpy fruit, sugar or other nutritive sweeteners and other ingredients and additives desired for product and dehydrated to form sheet which can be cut to desired shape and size. In this study among the different sweeteners made fruit bar sample A, B, C, D, E,F – sample C which was made with wood-apple and muskmelon using dates recorded maximum sensory score and overall acceptability (5.50±0.01). In sample C it was recorded that TSS level (78.89±0.01) °Brix, pH level (3.00±0.02), carbohydrates (71.8 ± 0.01) , crude fiber (2.80 ± 0.01) , ash (1.30 ± 0.01) , protein (2.08 ± 0.01) , vitamin (4.54 ± 0.03) , Calcium (1.64 ± 0.01) , Magnesium (0.23 ± 0.01) , Potassium (2.27 ± 0.01) , Iron (27.40 ± 0.01) and energy content (312).37±0.01). The overall viable count in the microbiological study was determined to be within allowable limits, and no fungal influence was seen. Making fruit bar from wood-apple and muskmelon can minimize the wastage of muskmelon and ensure the proper utilization of wood-apple and muskmelon while also improving health and being enjoyed by all socioeconomic groups.

Key words: Fruit bar, sensory score, Brix, crude fiber, organoleptic taste, microbial analysis, total viable count, fungal effect.