

SPATIAL AND SEASONAL VARIATION OF MICROPLASTICS IN THE SURFACE WATER OF PATENGA SEA BEACH, CHATTOGRAM, BANGLADESH

Sui Naing Aye Marma Milky

Roll No. 0122/05

Registration No. 1119

Session: 2022-2023

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

Department of Fisheries Resource Management
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

JUNE 2023

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The author

JUNE 2023

SPATIAL AND SEASONAL VARIATION OF MICROPLASTICS IN THE SURFACE WATER OF PATENGA SEA BEACH, CHATTOGRAM, BANGLADESH

Sui Naing Aye Marma Milky

Roll No. 0122/05

Registration No. 1119

Session: 2022-2023

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made.

Shahida Arfine Shimul	Dr. Sk. Ahmad Al Nahid
Supervisor	Co- Supervisor
•••••	

Department of Fisheries Resource Management
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh
JUNE 2023

Chairman of the Examination Committee

Acknowledgement

All praises are due to Almighty Allah for blessing me with the strength, aptitude and patience and enabled me to pursue higher education and to complete the thesis for the degree of Masters of Science (MS) in Fisheries Resource Management under the Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.

The author would like to express her deepest sense of graditude, sincere appreciation, profound regards and indebtedness to her respected supervisor **Dr. Sk. Ahmad Al Nahid**, Head and Associate Professor, Department of Fisheries Resource Management, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for his unflinching co-operation, constant inspiration, affectionate feelings, warmth and indomitable guidance throughout the period of research work and preparation of the manuscript.

The author finds it a great pleasure in expressing her heartfelt gratitude and immense indebtedness to her research supervisor **Mrs. Shahida Arfine Shimul**, Assistant Professor, Department of Fisheries Resource Management, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for her sympathy, sincere cooperation, inspiration and valuable suggestions for the completion of the research work.

The author is extremely glad to take the opportunity to express her heartfelt thanks and gratitude to her all other respected teachers of the Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for their valuable teaching and continuous encouragement during the study period in fisheries.

The author expresses her sincere thanks to **Mr. Saifuddin Rana** for his co-operation in data analysis and interpretation.

The Author

JUNE 2023

Table of Contents		
Contents	Page no.	
Title page	i	
Authorization	ii	
Signature page	iii	
Acknowledgement	iv	
Table of Contents	v-vi	
List of Figures	Vii	
List of Plates	Viii	
List of Abbreviations	ix	
Abstract	X	
Chapter One: Introduction	1-3	
1.1 Background	1-2	
1.2 Significance of the study	2	
1.2.1 Significance of microplastics	2	
1.2.2 Significance of Patenga Sea Beach	2-3	
1.3 Objectives of the study	3	
Chapter Two: Review of Literature	4-13	
2.1 Microplastic in marine environment	4-6	
2.2 Microplastic in estuarine environment	7	
2.3 Microplastic in freshwater environment	8-10	
2.4 Microplastic pollution in Bangladesh	10-13	
Chapter Three : Materials and Method	14-18	
3.1 Study area	14	
3.2 Sampling technique	14-15	
3.3 Laboratory analysis	15	
3.3.1 Wet sieving and drying	15	
3.3.2 Wet peroxidation	16	

3.3.3 Density separation	16
3.3.4 Filtration	17
3.3.5 Microplastics type, shape, color and size identification	17
3.3.6 Microplastics size measurement	17
3.4 Determination of microplastics abundance	17-18
3.5 Statistical analysis	18
Chapter Four: Results	19-24
4.1 Microplastics abundance	19-20
4.1.1 Variation of microplastics abundance among different sites	19
4.1.2 Seasonal Variation of microplasticss	20
4.2 Microplasticss characteristics	21-24
4.2.1 Microplastics type	21-22
4.2.2 Microplastics color	22-23
4.2.3 Microplastics shape	23-24
4.2.4 Microplastics size	24-25
Chapter Five : Discussion	26-30
5.1 Variation of microplastics abundance among different sites	26
5.2 Seasonal variation of microplasticss	26-27
5.3 Microplastics type	27-28
5.4 Microplastics color	28
5.5 Microplastics shape	28-29
5.6 Microplastics size	29-30
Chapter Six : Conclusion	31
Chapter Seven: Recommendation	32
References	33-44
Photo gallery	45-48
Biography	49

List of Figures			
Figure No.	Title	Page No.	
1	Map of Bangladesh and study area	14	
2	Abundance showing variation of MPs in surface water among different sites	19	
3	Seasonal variation between sites	20	
4	Seasonal variation of MPs	21	
5	Percentage of different types of microplastics	21	
6	Proportion of identified MPs types	22	
7	Percentage of different colors of microplastics	22	
8	Proportion of identified MPs color	23	
9	Percentage of different shapes of microplastics	23	
10	Proportion of identified MPs shape	24	
11	Percentage of different sizes of microplastics	24	
12	Proportion of identified MPs size	25	

List of Plates		
Figure No	Title	Page No
1	Manta net	45
2	Net towing	45
3	Flowmeter	45
4	Sample collection	45
5	Sieving	45
6	Sample collection	45
7	Drying	46
8	Adding H ₂ O ₂	46
9	Heating	46
10	Adding ZnCl ₂ solution to the sample	46
11	Pouring sample into density separator	46
12	Collection of separated sample	46
13	Filtration	47
14	Identification	47
15	Visual identification	47
16	Green rectangular fragment	47
17	Transparent angular film	47
18	Black elongated filament	47
19	Black round foam	48
20	Transparent irregular pellet	48
21	Transparent round granule	48
22	Size measurement	48

List of Abbreviations		
Acronym	Definition	
T	Ton	
Km ²	Square kilometer	
Particles/m ³	Particles per meter cube	
Items/g	Items per gram	
m	Meter	
cm	Centimeter	
cm ²	Square centimeter	
μm	Micrometer	
ml	Milliliter	
mm	Millimeter	
M	Molar	
g	Gram	
1	Liter	
g/cm ³	Gram per cm ³	
m^2	Square meter	
df	Degree of freedom	
F	F-value	
T	t- value	
Sig.	Significance	
Diff	Difference	
SE	Standard error	
e.g.	Exempli Gratia	
ANOVA	Analysis of Variance	

Abstract

The extensive non-degradable waste produced by the diverse use of many synthetic polymers, particularly plastics, led to the formation of microplastics (MPs) in the aquatic ecosystems. This current study narrated about spatial and seasonal variation in MPs quantity and features in the surface water at Patenga Sea Beach in Chattogram. Sampling was conducted from January 2022 to December 2022 seasonally by using 200 µm mesh size manta net. This study shows that Patenga beach (8.53 items/m³) has the highest abundance of microplastics and Bay terminal (1.83 items/m³) had the lowest abundance. The findings also revealed that there was a considerable variation among the season regarding the microplastics abundance. The abundance of MPs peaked in the spring (9.64 items/m³) and greatly differ from the winter (1.98 item/m³) and summer (2.18 items/m³) season. Characteristics of microplastics (types, colors, shapes, size) were also quantified in this study. There were six different types of microplastics identified of which fragment (49.63%) and filament (40.44%) were dominant. The eight different group of color were examined of which transparent (40.40%) and red (24.50%) were most dominant. Among six shapes of microplastics irregular (52.63%) and elongated (37.17%) and among five size classes 300 µm to 500 µm (48.50%) were the most dominant. Thus, the current study light up the current distribution and abundance of microlastics in Patenga Sea Beach and provide very useful information to the stakeholder and responsible agencies for starting the mitigation efforts.

Keywords: Microplastics, Surface water, Patenga Sea Beach, Abundance