

MICROPLASTIC IDENTIFICATION AND CLASSIFICATION OF THE FISH GUT FROM THE PATENGA SEA BEACH, CHATTOGRAM

Sabah Tuz Zohora

Roll No. 0122/03 Registration No.1117 Session: 2022-2023

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

> Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **JUNE 2023**

AUTHORIZATION

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author

June 2023

MICROPLASTIC IDENTIFICATION AND CLASSIFICATION OF THE FISH GUT FROM THE PATENGA SEA BEACH, CHATTOGRAM

Sabah Tuz Zohora

Roll No. 0122/03 Registration No. 1117 Session: 2022-2023

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Dr. Sk. Ahmad Al Nahid Supervisor Shahida Arfine Shimul

Co-supervisor

Chairman of the Examination Committee

Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE 2023

Acknowledgements

All gratitude is due to the Almighty **Allah Subhanahuwata'ala** for bestowing upon her the strength, ability and perseverance to pursue further education and complete her research work and thesis within due time, of course.

The author would like to express her profound love and sincere thanks to her parents, who brought her into the world and provided her with all she needed to succeed in life.

It is a pleasure to convey her profound gratitude to her MS supervisor, **Dr. Sk. Ahmad Al Nahid**, Associate Professor and Head, Department of Fisheries Resource Management, CVASU, for his close supervision, immense support, and intellectual guidance during the author's whole research wok.

The author also expresses her deepest sense of gratitude and sincere appreciation to her honorable teacher and research co-supervisor, **Shahida Arfine Shimul**, Assistant Professor, Department of Fisheries Resource Management, CVASU, for her kind cooperation, authoritative guidance, insightful recommendations, and continuous motivation.

The author's appreciation and gratitude are extended to UGC (University Grant Commission), Bangladesh and the Ministry of Science and Technology for funding required to accomplish her research work.

The author would like to convey her profound appreciation and warmest thanks to Mohammad Bokhteyar Hasan, Mrs. Supriya Biswas and all other laboratory technicians, Faculty of Fisheries, CVASU, for their sincere cooperation.

It's her fortune to gratefully acknowledge the support of **Saifuddin Rana**, for his support throughout the research tenure. Last but not least, the author also expresses her heartfelt gratitude and indebtedness to all the people who have supported her to complete the research work directly or indirectly.

The Author

Title	Page
	No.
Title Page	i
Authorization	ii
Signature page	iii
Acknowledgements	iv
Table of contents	v-vii
List of Tables	Viii
List of Appendices	viii
List of Figures	ix
List of Plates	Х
List of Abbreviations	xi
Abstract	xii
Chapter One: Introduction	1-5
1.1 Background	1-3
1.2 Microplastics as pollutant in Fish	3-4
1.4 Significance of Study	4-5
1.5 Objectives of the Study	5
Chapter Two: Review of Literature	6-9
2.1 Plastics use in the oceanic environment	6
2.2 MPs in the marine environment:	7
2.3 Microplastics (MPs) in fish	8-9
Chapter three: Materials and Methods	10-14
3.1 Study area	10

Table of contents

3.2 Sampling methods	10-11
3.3 Laboratory Analysis	11-13
3.3.1 Sample preparation	11-12
3.3.2 Microplastic type, color, shape, size identification	12-13
3.4 Statistical analysis	14
3.5 Contamination control	14
Chapter Four: Results	15-24
4.1 Fish weight, length and microplastic abundance	15
4.2 Variations of MPs based on total weight	15-16
4.3 Microplastics abundance based on the gut weight	16-17
4.4 Relationship between gut weight and total MPs item and MPA	17
4.5 Correlation between total weight, fish gut weight and total items	18-20
4.6 Correlation between Fish gut weight and micro plastics abundance	20-21
4.7 Types of microplastics	21-22
4.8 Shapes of Microplastics	22-23
4.9 Colors of microplastics	23-24
4.10 Sizes of microplastics	24
Chapter Five: Discussion	25-31
5.1 Microplastics in fish	25-26
5.2 Abundance of MPs (items/g)	26-27
5.3 Correlation of MPs	26-27
5.4 Types of MPs	28-29
5.5 Shapes of MPs	29
5.6 Colors of MPs	29-30
5.7 Sizes of MPs	31

Chapter Six: Conclusion	32
Chapter Seven: Recommendations and Future Perspectives	33
References	34-49
Photo Gallery	50-53
Appendices	54-55
Biography	56

Table No.	Title	Page No.
1	ZnCl ₂ solution preparation	13
2	Growth parameters of the studied fishes	15
3	Comparison of MPs total item (TI) based on their gut weight (SGWT)	18
4	Comparison of MPA (Microplastics abundance) based on their gut weight (SGWT)	18

LIST OF TABLES

LIST OF APPENDICES

Sl. No.	Title	Page No.
1	One way Anova of TI (Total Items) and MPA (Microplastics Abundance) of between size groups, within size groups	54
2	Correlations between TW (Total Weight), GW (Gut Weight), MPA (Micro plastics Abundance) and TI (Total Items)	54-55

Figure No.	Title	Page No.
1	Map of the study area	11
2	Variations of MPs abundance and total items with the total weight. (MPA- Microplastics abundance, TI - Total item, TW- Total weight)	16
3	Variations of MPs abundance and total items with the gut weight. (MPA- Microplastics abundance, TI- Total item, GW- Gut weight)	17
4	Correlation between total items and total weight. (TI- Total item, TW- Total weight).	19
5	Correlations between total items (TI) and gut weight (GW)	19
6	Correlations between gut weight (GW) and Microplastics abundance (MPA)	20
7	Type variations of microplastics	21
8	Shape variation of Microplastics	22
9	Color variations of Microplastics	22
10	Percentage of different colors of microplastics	23
11	Size variations of microplastics	23
12	Percentage of different sizes of microplastics	24

LIST OF FIGURES

Plate No.	Title	Page No.
1	Fish collection	49
2	Thawing of fish	49
3	Measuring total length	49
4	Weighting	49
5	Disection of fish	49
6	Removal of gut	49
7	Weighting of gut	50
8	Measuring of H ₂ O ₂	50
9	Pouring H ₂ O ₂	50
10	H ₂ O ₂ treatment	50
11	Shaking incubator	50
12	Pouring ZnCl ₂	50
13	Density seperator	51
14	Seperation of supernatant	51
15	Filtration	51
16	Filtrate sample	51
17	Visualization	51
18	Red elongated filament	51
19	Black elongated filament	52
20	Transparent irregular fragment	52
21	Measurements of MPs	52

LIST OF PLATES

Acronym	Definition	
MT	Metric ton	
MPs	Microplastics	
Km^2	Kilometer square	
Particles/m ³	Particles per meter cube	
Items/g	Items per gram	
Cm	Centimeter	
cm^2	Centimeter square	
μm	Micro meter	
Ml	Milliliter	
Mm	Millimeter	
Μ	Molar	
G	Gram	
L	Liter	
g/cm ³	Gram per cm ³	
m^2	Meter square	
Df	Degrees of freedom	
F	F-value	
Т	t- value	
Sig.	Significance	
SE	Standard error	
e.g.	Exempli Gratia	
ANOVA	Analysis of Variance	

LIST OF ABBREVIATIONS

ABSTRACT

Bangladesh is one of the countries that could be at risk from microplastic pollution. Only a few studies on microplastics have been conducted in Bangladesh. The study was on the identification and characterization of microplastics from the fish gut (Harpadon nehereus). 96 fishes were collected from the Kathgorh bazar, Patenga beach, Chattogram. Sampling was conducted on November, 2022. The fish gut samples were digested using Hydrogen peroxide protocol. The mean microplastic items and mean MPs abundance were 98.34 ± 53.11 items and 18.31 ± 7.17 item/g, respectively. From the One way ANOVA it was estimated that microplastics (MPs) abundance were significantly different among the gut weight size groups (p = 0.00001). The highest mean abundance of MPs was found in 0 to 2g gut size class $(29.31 \pm 6.73 \text{ item/g})$ and the lowest mean abundance of MPs was found in 6 to 8g gut size class (12.36 \pm 3.10 item/g). Two different types of microplastics were identified, of which fragments were 40.69% and filaments 59.31%. Five different colors of microplastics were observed, where blue MPs was the most dominant among them (37.57%). Three different shapes of microplastics were examined which were, irregular (29.71%), angular (10.98%) and elongated (59.31%). In this study, the highest proportion of microplastics was found in the size between 500 μ m to < 1mm (50.68%). The identification and characterization of microplastics from the fish gut gives an indication of the level of microplastic pollution in the study area.

Keywords: Microplastics, abundance, total items, gut weight, Patenga beach.