

Comparative Assessment of Gastrointestinal Indices and Feeding Habits among Three Species of Jew Fish from the Bay of Bengal, Bangladesh

Mst. Tahmina Parvin Bristy

Roll No. 0122/07 Registration No. 1095 Session. 2021-22

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fish Biology and Biotechnology

> Department of Fish Biology and Biotechnology Faculty of fisheries Chattogram Veterinary and Animal Sciences University Chattogram – 4225, Bangladesh

> > June 2023

AUTHORIZATION

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author June 2023

Comparative Assessment of Gastrointestinal Indices and Feeding Habits among Three Species of Jew Fish from the Bay of Bengal, Bangladesh

Mst. Tahmina Parvin Bristy

Roll No. 0122/07

Registration No.1095

Session: 2021-22

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made

Md. Main Uddin Mamun Supervisor Dr. Md. Mahiuddin Zahangir Co-supervisor

Dr. Md. Mahiuddin Zahangir

Chairman of the Examination Committee

Department of Fish Biology and Biotechnology Faculty of fisheries Chattogram Veterinary and Animal Sciences University Chattogram – 4225, Bangladesh

June 2023

ACKNOWLEDGEMENT

First and foremost, I extend my wholehearted gratitude to the Almighty Allah Subhanahuwata'ala for his unwavering guidance, boundless blessing and strength he has bestowed upon me throughout this journey. His divine support has been my constant source of inspiration and motivation and without his blessing this achievement would not have been possible.

Apart from the efforts of me, the success of this thesis depends largely on the encouragement and guidelines of many others. I take this opportunity to express my gratitude to the people who have been instrumental in the successful completion of this thesis.

I would like to express my deep and sincere gratitude to our honorable and respected Vice- Chancellor, Professor **Dr. A.S.M Lutful Ahasan** and Professor **Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU for providing invaluable opportunity, necessary research facilities and resources to accomplish my research work.

I would like to express my utmost gratitude to my dynamic supervisor, **Md. Main Uddin Mamun**, Assistant Professor, Department of Fish Biology and Biotechnology, CVASU for his selfless guidance, continuous support, constructive criticism, valuable advice and encouragement throughout the entire research work. His dynamism, sincerity and motivation have deeply inspired me. It has been a great pleasure and honor to have him as my supervisor.

I am extremely privileged to convey my profound gratitude to my co- supervisor **Dr. Md. Mahiuddin Zahangir**, Associate Professor and Head, Department of Fish Biology and Biotechnology, CVASU for his kind and continuous help, guidance and encouraging attitude for the completion of this research work. He has been generous to spare his precious time for discussion and doing away with difficulties arising at various stage.Wihout his knowledge, perceptiveness and encouragement I would never have finished this work.

I am deeply grateful and would like to extend my heartfelt appreciation to **Md. Moudud Islam**, Associate Professor, Department of Fish Biology and Biotechnology, CVASU and **Fatema Akhter**, Assistant Professor, Department of Fish Biology and Biotechnology, CVASU. It was an immense pleasure and a true honor to have the opportunity to work and learn under their guidance. Their mentorship has not only enriched my research but also greatly motivated me in my academic journey.

My heartfelt appreciation extends to my supportive friends and technical staff of the Department of Fish Biology and Biotechnology who has helped me to finish the research job, whether directly or indirectly.

Finally, my sincere gratitude and respect to my loving parents and family for their understanding and supports in completing this thesis. Without their help, it would have been impossible to overcome the difficulties faced during the research period.

The Author June 2023

Chapter Title Page No. Authorization ii Signature page iii Acknowledgment iv- v **Table of Contents** vi-viii List of figures ix-x List of abbreviations xi Abstract xii 1. Introduction 1-6 **1.1** Objectives of the study 6 2 **Review of literature** 7-12 **2.1** Food and feeding habit 7-8 **2.2** Visceral somatic index (VSI) 8 **2.3** Hepato somatic index (HSI) 9-10 **2.4** Intestine somatic index (ISI) 10 10-11 **2.5** Relative length of gut (RLG) 11-12 **2.6** Gonado somatic index (GSI) 3 Materials and methods 13-17 3.1 Sampling site 13 **3.2** Collection of samples 13-14 **3.3** Morphometric measurements 14 **3.4** Collection of internal organs 15 **3.5** Sex identification 16 **3.6** Food particles identification 16

TABLE OF CONTENTS

	3.7 Calculation of gastrointestinal indices	16-17
	3.7.1 Visceral somatic index (VSI)	16
	3.7.2 Hepato somatic index (HSI)	17
	3.7.3 Intestine somatic index (ISI)	17
	3.7.4 Relative length of gut (RLG)	17
	3.7.5 Gonado somatic index (GSI)	17
	3.8 Statistical analysis	17
4	Results	18-25
	4.1 Difference in the VSI values among three croaker species	18
	(<i>J. borneensis, O. ruber</i> and <i>J. belangerii</i>) from the Bay of Bengal	
	4.2 Difference in the HSI values among three croaker species	19
	(J. borneensis, O. ruber and J. belangerii) from the Bay of	
	Bengal	
	4.3 Difference in the ISI values among three croaker species	19-20
	(J. borneensis, O. ruber and J. belangerii) from the Bay of	
	Bengal	
	4.4 Difference in the RLG values among three croaker	20-21
	species (J. borneensis, O. ruber and J. belangerii) from the	
	Bay of Bengal	
	4.5 Difference in the GSI values among three croaker species	21-22
	(J. borneensis, J. belangerii and O. ruber) from the Bay of	
	Bengal	
	4.6 Abundance of food items found in three croaker species	23-25
	(J. borneensis, O. ruber and J. belangerii) from the Bay of	
	Bengal	
5.	Discussion	26-30

	5.1 Gastrointestinal index of <i>J. borneensis</i> , <i>O. ruber</i> and <i>J. belangerii</i>	26-29
	5.1.1 VSI and HSI value of <i>J. borneensis</i> , <i>O. ruber</i> and <i>J. belangerii</i>	26-27
	5.1.2 ISI value of <i>J. borneensis</i> , <i>O. ruber</i> and <i>J. belangerii</i>	27
	5.1.3 RLG value of <i>J. borneensis</i> , <i>O. ruber</i> and <i>J. belangerii</i>	27-28
	5.1.4 GSI value of <i>J. borneensis</i> , <i>O. ruber</i> and <i>J. belangerii</i>	28-29
	5.2 Feeding behavior of J. borneensis, O. ruber and J. belangerii	29-30
6	Conclusions	31
7.	Recommendation and future perspectives	32
	References	33-42
	A brief biography of the author	43

LIST OF FIGURES

Figure No.	Title	Page No.
1.	Map of sampling site area	13
2.	Experimental fish: (A) <i>Johnius borneensis;</i> (B) <i>Otolithes ruber</i> and C) <i>Johnius belangerii</i>	14
3.	Measurement of (A) Length and (B) Weight of fish	14
4.	Collection of internal organ	15
5.	Measurement of (A) Viscera weight; (B) Liver weight; (C) Intestine weight; (D) Gonad weight and (E) Intestine length of fish	15
6.	Microscopic view of prepared slide (female)	16
7.	Identification of food particles	16
8.	Visceral somatic index (VSI) values of <i>J. borneensis, O. ruber</i> and <i>J. belangerii</i> were collected from the Bay of Bengal coast of Bangladesh	18
9.	Hepato somatic index (HSI) values of <i>J. borneensis, O. ruber</i> and <i>J. belangerii</i> were collected from the Bay of Bengal coast of Bangladesh	19
10.	Intestine somatic index (ISI) values of <i>J. borneensis, O. ruber</i> and <i>J. belangerii</i> were collected from the Bay of Bengal coast of Bangladesh	20
11.	Relative length of gut (RLG) of <i>J. borneensis, O. ruber</i> and <i>J. belangerii</i> were collected from the Bay of Bengal coast of Bangladesh	21
12.	Gonado-somatic index (GSI) of <i>J. borneensis, O. ruber</i> and <i>J. belangerii</i> collected from the Bay of Bengal coast of Bangladesh in the month of August to September	21-22
13.	Food found in the intestine (A) Shrimp; (B) Fish Larvae; (C) Crushed Shell; (D) Mud; (E) <i>Setipinna phasa</i> and (F) Tong sole and Shrimp	23
14.	Qualitative percentage of various food items of <i>J.</i> <i>borneensis</i> , collected from the Bay of Bengal coast of Bangladesh in the month of August to September ($n = 35$)	24

15.	Qualitative percentage of various food items of <i>O. ruber</i> , collected from the Bay of Bengal coast of Bangladesh in the month of August to September $(n = 35)$	24
16.	Qualitative percentage of various food items of <i>J.</i> <i>belangerii</i> , collected from the Bay of Bengal coast of Bangladesh in the month of August to September $(n = 35)$	25

LIST OF ABBREVIATIONS

VSI	Visceral Somatic Index
HIS	Hepato Somatic Index
ISI	Intestine Somatic Index
RLG	Relative Length of Gut
GSI	Gonado Somatic Index
ANOVA	Analysis of Variance
SD	Standard Deviation
TL	Total Length
SL	Standard Length
BW	Body Weight

ABSTRACT

The Bay of Bengal (BoB) is one of the rich marine ecosystems with diverse fish species. Croakers, also known as jewfish are economically important fish species in the BoB. However, very little is known about the life-history traits of the croaker from the BoB. In this study, a total of 105 samples of croakers were collected during the months of September - October 2021 and September-October 2022 from the coast of Dorianogor jele polli of Cox's Bazar and an extensive analysis of biological indices and feeding habits was conducted on three croaker species - Johnius borneensis, Otolithes ruber and Johnius belangerii. The total length and total weight of the individual sample along with the length and weight of the targeted internal organs were measured to calculate gastrointestinal indices and RLG values. Results found significant variations in these gastrointestinal indices like visceral somatic index (VSI), hepato somatic index (HSI), intestine somatic index (ISI), relative length of gut (RLG) and gonado somatic indices (GSI) values among the studied croaker species. Results showed that J. borneensis exhibited the highest VSI, indicating superior energy storage compared to other species. The HSI values also demonstrated significant difference highlighting distinct nutritional requirements and metabolic activities among the croaker species. In addition, the dietary preferences of the croaker species were investigated through gut content analysis and also found variations in the food compositions and amount of food among three closely related croaker species. The findings of the present study will provide a baseline for valuable insights into the nutritional health, feeding behaviors and reproductive patterns of these croaker species, contributing to a better understanding of their ecological roles in the Bay of Bengal.

Keyword: Croakers, Visceral somatic indices (VSI), Hepato somatic indices (HSI), Intestine somatic indices (ISI), Gonado somatic indices (GSI), Relative length of gut (RLG), Gut content analysis.