

Effect of Increased Water Temperatures on the Expression of Gonadotropin-Releasing Hormone (GnRH), Kisspeptin and their Receptors in the Regulation of Hypothalamus-Pituitary-Gonadal (HPG) Axis in Nile Tilapia (*Oreochromis niloticus*)

> Azmaien Naziat Roll No. 0122/04 Registration No. 1092 Session: 2021-22

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fish Biology and Biotechnology

> Department of Fish Biology and Biotechnology Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **JUNE 2023**

#### Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Azmaien Naziat June 2023 Effect Of Increased Water Temperatures on the Expression of Gonadotropin-Releasing Hormone (GnRH), Kisspeptin and their Receptors in the Regulation of Hypothalamus-Pituitary-Gonadal (HPG) Axis in Nile Tilapia (*Oreochromis niloticus*)

> Roll No. 0122/04 Registration No. 1092 Session: 2021-2022

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made.

\_\_\_\_\_

Dr. Md. Mahiuddin Zahangir Supervisor Md. Main Uddin Mamun Co-supervisor

\_\_\_\_\_

Dr. Md. Mahiuddin Zahangir

**Chairman of the Examination Committee** 

**Department of Fish Biology and Biotechnology** 

**Faculty of Fisheries** 

Chattogram Veterinary and Animal Sciences University

Chattogram-4225, Bangladesh

**JUNE 2023** 

### ACKNOWLEDGEMENTS

All thanks belong to Allah, who has blessed me with the strength, ability, and patience to continue postgraduate education and complete the thesis for the Masters of Science (MS) degree in Fish Biology and Biotechnology.

My heartfelt gratitude goes to **Prof. Dr. M. Nurul Absar Khan**, Dean, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University (CVASU), who initiated the Master of Sciences program in the Faculty of Fisheries and furnished laboratories with modern instruments and facilities to conduct good quality research.

With great delight, I would really like to express my sincere gratitude, tremendous respect, and enormous indebtedness to my honorable teacher and research supervisor, **Dr. Md. Mahiuddin Zahangir**, Associate Professor and Head, Department of Fish Biology and Biotechnology, CVASU, for providing me with the opportunity to conduct research and for providing invaluable guidance and continuous support throughout this research. His passion, vision, integrity, and motivation have left an indelible impression on me. Working and studying under his direction was a wonderful honor and privilege. I owe him a huge debt of gratitude, as well as admiration for his cordial collaboration, sensitivity, and amazing sense of humor.

I also sincerely express my gratitude to my co-supervisor, **Md. Main Uddin Mamun**, Assistant Professor, Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram for his valuable guidance to teach me to be more confident person.

I express my thanks to **Md. Moudud Islam**, Associate Professor and **Fatema Akhter**, Assistant Professor, Department of Fish Biology and Biotechnology, Chattogram Veterinary and Animal Sciences University, Chattogram for their valuable and constructive suggestions during the research work.

I would like to convey my heartfelt gratitude to my supportive friends and lab assistants of Department of Fish Biology and Biotechnology for their tireless efforts throughout the research time. I also want to convey my genuine gratitude, real appreciation to everyone who has helped me finish the research work. Finally, my sincere gratitude and respect to my loving parents for their unwavering support, inspiration, blessings, forbearance, and unending love in helping me finish my study.

The Author June 2023

| SI. NO.   | TITLE                                                                             | PAGE NO. |
|-----------|-----------------------------------------------------------------------------------|----------|
|           | Authorization Page                                                                | ii       |
|           | Signature Page                                                                    | Iii      |
|           | Acknowledgements                                                                  | iv       |
|           | Table of Content                                                                  | v-vi     |
|           | List of Figures                                                                   | vii      |
|           | List of Tables                                                                    | vii      |
|           | List of Plates                                                                    | viii     |
|           | Abstract                                                                          | Ix       |
| CHAPTER 1 | INTRODUCTION                                                                      | 1-4      |
|           | Objectives                                                                        | 4        |
| CHAPTER 2 | <b>REVIEW OF LITERATURE</b>                                                       | 5-12     |
|           | 2.1. Climate change and reproduction                                              | 6-7      |
|           | 2.2. Endocrine control and HPG axis                                               | 7        |
|           | 2.3. Gonadotropin releasing hormone (GnRH)                                        | 7-10     |
|           | 2.4. Kisspeptin                                                                   | 10-11    |
|           | 2.5. Nile tilapia (Oreochromis niloticus)                                         | 11-12    |
| CHAPTER 3 | MATERIALS AND METHOD                                                              | 13-21    |
|           | 3.1. Experimental fish                                                            | 14       |
|           | 3.2. Experimental design                                                          | 14-15    |
|           | 3.3. Sample collection                                                            | 15       |
|           | 3.4. RNA extraction                                                               | 16-17    |
|           | 3.5. cDNA synthesis                                                               | 17-18    |
|           | 3.6. Real time PCR assays for <i>kiss2</i> , <i>gpr54 gnrh1</i> and <i>gnrh1r</i> | 18-19    |
|           | 3.7. Calculation of gonadosomatic index (GSI) and gonad histology                 | 19-20    |
|           | 3.8. Water quality parameters                                                     | 20-21    |
|           | 3.9. Statistical analysis                                                         | 21       |

### **Table of Content**

| CHAPTER 4 | RESULTS                                                                                                               | 22-30 |
|-----------|-----------------------------------------------------------------------------------------------------------------------|-------|
|           | 4.1. Effect of higher acclimation temperatures on the expression of <i>kiss2</i> in the brain of <i>O. niloticus</i>  | 23    |
|           | 4.2. Effect of higher acclimation temperatures on the expression of <i>gpr54</i> in the brain of <i>O. niloticus</i>  | 24    |
|           | 4.3. Effect of higher acclimation temperatures on the expression of <i>gnrh1</i> in the brain of <i>O. niloticus</i>  | 25    |
|           | 4.4. Effect of higher acclimation temperatures on the expression of <i>gnrh1r</i> in the brain of <i>O. niloticus</i> | 26    |
|           | 4.5. Effect of acclimation temperatures on the gonadal development in <i>O. niloticus</i>                             | 27-28 |
|           | 4.6. Effect of higher acclimation temperatures on GSI of <i>O. niloticus</i>                                          | 28-29 |
|           | 4.7. Effect of temperature on water quality parameters of rearing tanks                                               | 30    |
| CHAPTER 5 | DISCUSSION                                                                                                            | 31-35 |
| CHAPTER 6 | CONCLUSION                                                                                                            | 36-37 |
| CHAPTER 7 | <b>RECOMMENDATIONS AND FUTURE</b><br><b>PROSPECTS</b>                                                                 | 38-39 |
|           | REFERENCES                                                                                                            | 40-58 |

# List of Figures

| Figure no. | Title                                                                                                                                                                                      | Page no. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.         | Changes in mRNA levels of <i>kiss2</i> in the brain of <i>O</i> .<br><i>niloticus</i> at different acclimation temperature (31°C, 34°C, 37°C) in ( <b>A</b> ) male and ( <b>B</b> ) female | 23       |
| 2.         | Changes in mRNA levels of $gpr54$ in the brain of <i>O</i> .<br><i>niloticus</i> at different acclimation temperatures (31°C, 34°C, 37°C) in ( <b>A</b> ) male and ( <b>B</b> ) Female     | 24       |
| 3.         | Changes in mRNA levels of $gnrh1$ in the brain of <i>O</i> .<br><i>niloticus</i> at different acclimation temperatures (31°C, 34°C, 37°C) in ( <b>A</b> ) males and ( <b>B</b> ) females.  | 25       |
| 4.         | Changes in mRNA levels of $gnrh1r$ in the brain of <i>O</i> .<br><i>niloticus</i> at different acclimation temperatures (31°C, 34°C, 37°C) in ( <b>A</b> ) male and ( <b>B</b> ) female    | 26       |
| 5.         | Changes in gonadosomatic index (GSI) of <i>O. niloticus</i> at different acclimation temperatures (31°C 34°C, 37°C) in ( <b>A</b> ) males and ( <b>B</b> ) females.                        | 29       |

## List of Tables

| Table No. | Title                                                   | Page No. |
|-----------|---------------------------------------------------------|----------|
| 1.        | Equipment and reagents required for RNA isolation       | 16       |
| 2.        | List of primers used in the present study               | 18       |
| 3.        | Water quality parameters recorded during the experiment | 30       |

| Plate No. | Title                                                                                                                            | Page No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.        | Experimental Fish (Nile tilapia, Oreochromis niloticus)                                                                          | 14       |
| 2.        | Experimental tank setup                                                                                                          | 15       |
| 3.        | Final Sampling                                                                                                                   | 15       |
| 4.        | Isolation and Quantification of RNA                                                                                              | 17       |
| 5.        | RT-PCR analysis                                                                                                                  | 19       |
| 6.        | Gonad histology                                                                                                                  | 20       |
| 7.        | Measuring water quality parameters                                                                                               | 21       |
| 8.        | Changes in gonadal developmental stages at different acclimation temperatures (31°C, 34°C, 37°C) in male <i>O. niloticus</i> .   | 27       |
| 9.        | Changes in the developmental stages at different<br>acclimation temperatures (31°C, 34°C, 37°C) in female<br><i>O. niloticus</i> | 28       |

# List of Plates

### ABSTRACT

Temperature is a preeminent factor in the regulation of fish reproduction and can hinder gonadal development and maturation beyond a specific threshold. To understand the mechanism that controls reproduction under different acclimation temperatures, genes encoding for kisspeptin (kiss2), gonadotropin-releasing hormones (gnrh1) and their receptors (gpr54 and gnrh1r) in the brain along with gonadal maturation and gonadosomatic index (GSI) was studied in juvenile Nile tilapia (Oreochromis *niloticus*). The fish were subjected to three distinct acclimation temperatures including 31°C, 34°C and 37°C for a duration of 14 days. The findings showed that mRNA levels of kiss2, gpr54, gnrh1 and gnrh1r were relatively decreased at 37°C compared to 31°C and 34°C in the brain of O. niloticus. Histologically, the gonads of both sex had normal growth of gametes at control temperature (31°C) compared to the other groups. At 37°C acclimation temperatures, the spermatogenesis and oocyte maturation were slowed down and atretic oocytes were found in the ovary. The GSI value was concomitant with other results, with a significant decrease at 37°C for both sexes. Taken together, the results imply that elevated temperatures beyond a specific threshold had a negative impact on reproduction by suppressing Kiss/GnRH system and eventually restraining normal growth and maturation of gametes.

**Keywords**: reproduction, kisspeptin, gonadotropin-releasing hormone, acclimation temperature, gonadal maturation, *Oreochromis niloticus*