

Assessment of toxic heavy metals contamination in water collected from different selected sites of the Karnaphuli River, Chattogram, Bangladesh

Md. Shakhawat Hossain

Roll No.: 0118/02 Registration No.: 537 Session: 2018-2019 (January-June)

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Food Chemistry and Quality Assurance

> Department of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology Chittagong Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **JUNE, 2019**

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chittagong Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Md. Shakhawat Hossain

The Author June, 2019

Assessment of toxic heavy metals contamination in water collected from different selected sites of the Karnaphuli River, Chattogram, Bangladesh

Md. Shakhawat Hossain

Roll No.: 0118/02 Registration No.: 537 Session: 2018-2019 (January-June)

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Achigap

(Md. Ashraful Islam) Supervisor Assistant Professor Department of Applied Chemistry and Chemical Technology

> (Md. Fahad Bin Quader) Chairman of the Examination Committee

Department of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology Chittagong Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE, 2019

DEDICATED TO MY RESPECTED AND BELOVED PARENTS AND TEACHERS

Acknowledgements

I am ever grateful and very much obliged to the Almighty without whose grace it would have never possible to pursue this study in this field of science and to complete the work of this dimension and the manuscript successfully.

I would like to express the first and foremost my deepest appreciation to my respectable and honorable research supervisor **Md. Ashraful Islam** (Assistant Professor, Department of Applied Chemistry and Chemical Technology, Faculty of food science & Technology, CVASU). Without his supervision and guidance it would not be possible for me to complete the research and then write up the dissertation successfully.

I also gratefully acknowledge to our honorable Vice Chancellor to Professor **Dr. Goutam Buddha Das** and my respectable teacher **Md. Fahad Bin Quader** (Assistant Professor and Dept. Head, Department of Applied Chemistry and Chemical Technology, Faculty of food science & Technology, CVASU) for their valuable suggestions and cooperation during my research work.

Furthermore, I also would like to acknowledge with much appreciation for the support, cooperation and encouragement received during my MS program from all technical and non-technical staffs of the **Department of Applied Chemistry and Chemical Technology**, CVASU. I sincerely thank to the University Grants Commission for giving me a research grant to accomplish my research work.

I am ever grateful to my beloved parents and friends for their encouragement, cooperation and friendly help during the study period.

The Author June, 2019

TABLE OF CONTENTS

CHAPTER			PAGE
	Authorization		II
	Signature	Signature page	
	Acknowl	edgements	V
	Table of	Table of Contents	
	List of ta	VIII	
	List of fig	IX	
	Acronym	Х	
	Abstract	XI	
Chapter-1	INTRODUCTION		01-04
	1.1	Objectives	03
	1.2	Anticipated outcomes	04
Chapter-2	REVIEW OF LITERATURE		05-21
	2.1	Water quality	05
	2.2	Water pollution	06
	2.3	Heavy metals	07
	2.3.1	Introduction	07
	2.3.2	Influence of heavy metals on human and	08
		environmental pollution	
	2.3.3	Heavy metals effect on water quality	12
	2.4	Sources of heavy metals	14
	2.4.1	Natural processes	14
	2.4.2	Anthropogenic processes	16
	2.5	Heavy metals and their effects	18
	2.5.1	Lead	18
	2.5.2	Chromium	19
	2.5.3	Nickel	20
	2.6	Prevalence of lead, nickel and chromium in water	21
	2.7	Risk factors for the presence of lead, nickel and	21
		chromium in water	

Chapter-3	MATERIALS AND METHODS		23-29
	3.1	Study Area	23
	3.2	Study period	24
	3.3	Water samples collection	24
	3.4	Sample analysis	25
	3.4.1	Preliminary treatment of samples for heavy	25
		metal determination	
	3.4.2	Analytical Techniques	25
	3.4.2.1	Atomic Absorption Spectrometry (AAS)	25
	3.5	Statistical analysis	29
Chapter-4	RESULT	RESULTS	
	4.1	level of toxic metals in water	30
	4.2	Mean concentration of heavy metals in water	30
Chapter-5	DISCUS	DISCUSSION	
	5.1	General	34
	5.2	Variation of heavy metal concentration among different sites of KR	34
	5.3	Concentration of Lead (Pb) in water	36
	5.4	Concentration of Chromium (Cr) in water	37
	5.5	Concentration of Nikel (Ni) in water	38
	5.6	Comparison of average mean concentration of metals with international standard	40
	5.7	Impact of human activities and catastrophic events on heavy metal accumulation	41
Chapter-6	CONCL	CONCLUSION	
Chapter-7	RECOM PERSPI	RECOMMENDATIONS AND FUTURE PERSPECTIVES	
Chapter-8	REFER	ENCES	48-58
	APPEN	DIX	59-66
	BRIEF	BRIEF BIOGRAPHY	

LIST OF TABLES

NO. OF TABLES	SL. NO.	NAME OF THE TABLE	PAGE NO.
01	2.1	Shows metal limits $(\mu g/l)$ in water set by national and international organization	14
02	2.2	Sources of heavy metal pollutants in water	15
03	3.1	The sampling locations and its tidal condition	24
04	4.1	Mean concentration of heavy metals in water of KR at selected sites	30
05	5.1	Variation of heavy metal concentration among different regions	35
06	5.2	The location of the water pollution responsible industries	39
07	5.3	The type and number of industries close to Karnaphuli River	39
08	5.4	Comparing total mean concentration of metals in all stations with WHO standards	40

LIST OF FIGURES

NO. OF	SL.	NAME OF THE TABLE	PAGE
TABLES	NO.		NO.
01	2.1	Major pathways of heavy metal and metalloid	9
		dispersion and human exposure in Bangladesh.	
02	2.2	Impacts of heavy metals on the environment	10
03	2.3	Neurotoxic effects of heavy metal	12
04	2.4	Sources and sinks of heavy metals	16
05	2.5	Sources of heavy metals and their cycle in the environment	17
06	3.1	Geographical location of study area and sampling points	23
07	3.2	Diagram to illustrate instrumentation of AAS	26
08	3.3	Calibration curve of Lead (Pb)	27
09	3.4	Calibration curve of Nickel (Ni)	28
10	3.5	Calibration curve of Chromium (Cr)	28
11	4.1	Mean concentration of lead (Pb) in samples compared with WHO standard	31
12	4.2	Mean concentration of Cr in samples compared with WHO standard	32
13	4.3	Mean concentration of Nickel (Ni) in samples compared with WHO standard	33
14	5.1	Population, population density by residence and urban area/built-up in Chattogram in the last 30 years	42

LIST OF ACRONYMS AND SYMBOLS USED

Abbreviation and symbols	Elaboration
%	Percent
°C	Degree Celsius
BDL	Below Detection Limit
KR	Karnaphuli River
CVASU	Chittagong Veterinary and Animal Sciences University
SD	Standard Deviation
WHO	World Health Organization
EU	European Union
BSTI	Bangladesh Standard and Testing Institution
USPEA	United States Para-Equestrian Association
АРНА	American Public Health Association
AAS	Atomic Absorption Spectrometry
Pb	Lead
Cr	Chromium
Ni	Nickel
Cd	Cadmium
Cu	Copper
As	Arsenic

Abstract

Heavy metal pollution of water arising from anthropogenic sources continue to become a great challenge to human and aquatic population. In Chattogram, conflicts arising from industrials wastages, a growing population without proper sewerage facilities, increase in the number of aging automobiles, fertilizers and pesticides from the agricultural farms in the highlands of Chattogram are the biggest contributors of heavy metals in the water. Since the heavy metals in the environment have continued to increase, there is need to determine their levels in the environment for efficient environment management and hence the need to determine the levels of heavy metals in the water of the Karnaphuli River, Chattogram. In the present study, the heavy metals that were analyzed included Pb, Cr and Ni. There are 10 water samples were collected from different industrial, non-industrial, residential and commercial sites of the Karnaphuli River at dry seasonal period. The collected water samples were immediately preserved at 3° to 4°C and digested using nitric acid and hydrochloric acid. The digested water samples were analyzed for heavy metals using Atomic Absorption Spectrophotometer (AAS). The data was analyzed using ANOVA with the level of significance (≤ 0.05). From the findings, means of Pb were found below detection limit (BDL) in several points like Patenga sea beach, Shipping Corporation, Chaktai New Bridge, Lamburhat and Rangunai sadar. Within the detection limit the mean concentration of Pb 0.0455±0.00015, 0.131±0.0014, 0.0152±0.00015, 0.0172 ± 0.00014 , 0.072 ± 0.0014 mg/L were found in the 15 no. ghat (opposite of KAFCO), Sadarghat jetty, Banglabazar ghat, Firingibazar ghat, Kalurghat industrial areas respectively. The mean levels of Cr were found BDL in the Patenga sea beach, Lamburhat and Rangunai sadar. Within the detection level, concentration of Cr 0.0264±0.00015, 0.0123±0.00015, 0.115±0.00212, 0.0091±0.0003, 0.024±0.0015, 0.0186 ± 0.00014 , 0.092 ± 0.0014 mg/L were found in the 15 no. ghat, Sadarghat jetty, Banglabazar ghat, Firingibazar ghat, Kalurghat industrial areas respectively. The means of Ni were found BDL in Patenga sea beach, the 15 no. ghat, Shipping Corporation, Lamburhat and Rangunai sadar. While the mean levels of Ni 0.012±0.003, 0.0072±0.00015, 0.012±0.0015, 0.016±0.0015, 0.050±0.0014 mg/L were found in Sadarghat jetty, Banglabazar ghat, Firingibazar ghat, Kalurghat industrial areas respectively. Ni was found below the permissible limit of WHO standard of drinking water (0.07 mg/L) in all stations during the analysis. However, the highest content of Pb and Cr were found in Sadarghat jetty are 0.131±0.0014 and 0.115±0.00212 mg/L respectively which exceeds the permissible limits of WHO standards (WHO, 1993, 2004 and 2011). This study will convey a strong message for the government body, policy maker and local authority to establish rules and regulation for frequent monitoring of heavy metals in this environment and hence providing a guideline to curb heavy metal pollution in water of the Karnaphuli River including other important rivers in Bangladesh.

Key words: Water, Heavy metal, Atomic Absorption Spectrophotometer, Pollution, Lead, Chromium, Nikel, Karnaphuli River.