EXTRACTION OF PECTIN FROM SWEET LEMON PEEL AND ITS UTILIZATION IN PREPARATION OF JELLY

Master of Science in Food Chemistry and Quality Assurance

AFRUZ JANNAT LABONI

Roll No.: 0117/13 Registration No.: 00416 Session: January-June, 2019

The thesis submitted in the partial fulfillment of the requirements for the degree of Masters of Science in Food Chemistry and quality Assurance

Department of Applied Chemistry and Chemical Engineering Faculty of Food Science and Technology Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE, 2019

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Afruz Jannat Laboni

June, 2019

EXTRACTION OF PECTIN FROM SWEET LEMON PEEL AND ITS UTILIZATION IN PREPARATION OF JELLY

Master of Science in Food Chemistry and Quality Assurance

AFRUZ JANNAT LABONI

Roll No.: 0117/13 Registration No.: 00416 Session: January-June, 2019

••••••

(Professor Dr. Mohammad Lutfur Rahman) Supervisor

(Md. Fahad Bin Quader) Chairman of the Examination Committee

Department of Applied Chemistry and Chemical Engineering Faculty of Food Science and Technology

Chattogram Veterinary and Animal Sciences University Khulshi-4225, Chattogram, Bangladesh JUNE, 2019

Dedicated To My Respected and Beloved Parents and Teachers

Acknowledgement

At First and foremost, all praises and thanks to almighty Allah, for the blessings throughout to complete the research work successfully for the degree of Master of Science (MS) in Food Chemistry and Quality Assurance under the Department of Applied Chemistry and Chemical Engineering at Chattogram Veterinary and Animal Sciences University (CVASU).

I would like to express my deep and sincere gratitude to my research supervisor, **Professor Dr. Mohammad Lutfur Rahman**, Department of Anatomy and Histology, CVASU. It was really a great privilege and honour to work and study under his guidance. I understand it was impossible to complete the dissertation without his constructive supervision.

I am highly grateful to **Md. Fahad Bin Quader,** Assistant Professor and Head, Department of Applied Chemistry and Chemical Engineering, Chattogram Veterinary and Animal Sciences University, Chattogram, for his worthy inspiration and generous help in carrying out of the research work.

Finally, I sincerely thank to all the members of the Department of Applied Chemistry and Chemical Engineering, Food Processing and Engineering, Poultry Research and Training Centre for their help throughout this research.

Last but not least, I extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. I am very much thankful to my friends and mates who helped me in solving difficulties, analyzing data and continual support to complete this research work.

The author

June, 2019

Table of Contents

Authorization		
Acknowledgement		
Table of Contents		
List of abbreviations		
List of Tables	IX	
List of Figures	Х	
Abstracts	XI	
CHAPTER -1: INTRODUCTION	1	
CHAPTER -2: REVIEW OF LITERATURE	4	
2.1 Pectin	4	
2.2 Extraction of pectin by different methods	4	
2.2.1 Water based extraction	5	
2.2.2 Microwave heating extraction	6	
2.2.3 Extraction by pectic enzymes	6	
2.3 Purification and characterization of pectin	7	
2.4 Effects of acid concentration, temperature and time on the process and the	8	
product		
2.5 Jelly	10	
2.6 Health benefits of fruit jellies	10	
2.7 Industrial demand for fruit jellies	11	
CHAPTER -3: MATERIALS AND METHODS	12	
3.1 Materials	12	
3.2 Methods	12	
3.2.1 Sample preparation	12	
3.2.2 Extraction of pectin	12	
3.2.3 Purification and Centrifugation	13	
3.2.4 Preparation of pineapple jelly	13	
3.3 Analysis of physiochemical properties of extracted pectin	13	
3.3.1 Percentage yield of pectin	13	
3.3.2 Moisture content	14	
3.3.3 Ash content	14	
3.3.4 Equivalent weight	15	
3.3.5 Methoxyl content	15	
3.3.6 Total Anhydrouronic acid content	16	

3.4 Microbiological analysis of jelly	16
3.4.1 Fecal coliform test procedure	16
3.4.2 Confirmation of E. coli using MacConkey Agar Media	17
3.4.3 Identification and Isolation of Salmonella spp.	18
3.5 Sensory evaluation	18
CHAPTER- 4: RESULTS	20
4.1 Pectins yield in different extraction conditions	20
4.2 Effect of parameters on pectin ield	21
4.2.1 The effect of time, temperatures and P^H of solutions on pectin yield	21
extracted from malta peel powder usin nitic acid	
4.2.2 The effect of time, temperatures and P^{H} of solutions on pectin yield	23
extracted from malta peel powder usin citic acid	
4.3 Physiochemical analysis of extracted Pectin	24
4.4 Determination of microbial load	32
4.5 Sensory evaluation of pineapple jelly	33
CHAPTER-5: DISCUSSIONS	34
5.1 Effect of parameters on pecin yield	34
5.2 Chemical composition of extracted pectin	35
5.2.1 Moisture content	35
5.2.2 Ash content	36
5.2.3 Equivalent weight	36
5.2.4 Methoxl content	36
5.2.5 Anhydrouronic acid content	37
5.3 Sensory analysis of jelly developed by using extracted pectin	37
CHAPTER-6: CONCLUSIONS	39
CHAPTER-7: RECOMMENDATIONS AND FUTURE PERSPECTIVES	40
References	41
Appendix A: Photo gallery	
Appendix B: Tasting of pineapple Jelly (Hedonic rating test)	49
Brief biography	

Abbreviation
Percent
Aerobic Colony Count
Atomic Mass Unit
Analysis of Variance
Association of Official Analytical Chemists
Anhydrouronic Acid
Bangladesh Statistics Bureau
Degree Celsius
Colony forming units
Centimeter
Chattogram Veterinary and Animal Sciences
University
Food Safety and Standards Authority of India
Gram
International Commission on Microbiological
Specifications for Foods
Kilogram
Kilopascal
Milliliter
Millimole
Most Probable Number
Normality
Poultry Research and Training Center
Standard Plate Count
Tukey's Multiple Comparison Test
Aerobic Plate Count
Total Soluble Solid
World Health Organization

List of Tables

SL No.	Title	Page No.
1	Table 4.1: % yield of pectin obtained from malta peel with different extraction conditions	20
2	Table 4.2: Physiochemical test results for pectin (citric acid) samples	25
3	Table 4.3: Physiochemical test results for pectin (nitric acid) samples	26
4	Table 4.4: Descriptive statistics of Moisture content (%)	27
5	Table 4.5: Descriptive statistics of Ash content (%)	28
6	Table 4.6: Descriptive statistics of Equivalent weight	29
7	Table 4.7: Descriptive statistics of Methoxyl content (%)	30
8	Table 4.8: Descriptive statistics of Anhydrouronic acid content (%)	31

List of Figures

SL No.	Title	Page No.
1	Figure 4.1: Effect of time and temperature on pectin yield at P ^H 1.5 using nitric acid	21
2	Figure 4.2: Effect of time and temperature on pectin yield at P ^H 2.0 using nitric acid	22
3	Figure 4.3: Effect of time and temperature on pectin yield at P ^H 2.5 using nitric acid	22
4	Figure 4.4: Effect of time and temperature on pectin yield at P ^H 1.5 using citric acid	23
5	Figure 4.5: Effect of time and temperature on pectin yield at P ^H 2.0 using citric acid	24
6	Figure 4.6: Effect of time and temperature on pectin yield at P ^H 2.5 using citric acid	24
7	Figure 4.7: Moisture content (%) of citic acid and nitric acid pectin samples	27
8	Figure 4.8: Ash content (%) of citic acid and nitric acid pectin samples	28
9	Figure 4.9: Equivalent weight of citic acid and nitric acid pectin	29
10	Figure 4.10: Methoxyl content (%) of citic acid and nitric acid	30
11	Figure 4.11: Anhydrouronic acid content (%) of citic acid and nitric acid pectin samples	31

Abstract

This study was conducted on the potential of citrus peel as a source of pectin. Pectin was extracted from Sweet lemon (Malta) peel powder using two different acids (citric and nitric) and times (30 & 60m), at three different temperatures and P^H (60, 70 & 80°C), (1.5, 2.0 & 2.5P^H), respectively. Pectin yields varied from 18.7% to 72.5% and 15.4% to 42.8% extracted by using citric acid and nitric acid, respectively. The best extraction condition was found to be higher in yield by using citric acid at 80°C for 60m with P^{H} of 1.5. The equivalent weight of pectin isolated from sweet lemon peel powder using citric acid and nitric acid as reagents was found to be 312.57 and 833.05amu, respectively. Whereas, the methoxyl content of extacted pectin was found to be 6.18% and 5.29%. On the other hand, anhydrouronic acid content was found 91.74% and 52.01% for citric acid and nitric acid, respectively. The percentage of methoxyl content of isolated pectin showed higher by using citric acid and percentage of anhydrouronic acid was found to be higher by using citric acid as compared to nitric acid as reagents. The ash and moisture content of isolated pectin were 7.38% and 5.212% for citric acid and 3.48% and 7.512% for nitric acid, respectively. Microbial and Sensory evaluation of developed jelly were observed. The result of microbial analysis was found negative for all jelly samples. The jelly developed from pineapple fruit extract with addition of 0.5% pectin extracted by using citric acid was found to be the less in score as compared to nitric acid pectin. The outcome got from this examination showed that pectin extracted from malta peel is with high quantity and quality and is promising for commercial production.

Key words: Anhydrouronic acid, Ash, Citric acid, Equivalent weight, Jelly, Methoxyl, Moisture, Nitric acid, Pectin, P^H, Reagents, Temperature, Time, Yield.