EFFECT OF LIGHTING DURATION ON THE BEHAVIOUR, WELFARE, AND PERFORMANCE OF BROILER CHICKEN

Abdullah Al Masud Roll no: 0121/04 Registration no. 937 Session: 2021-22

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree in Poultry Science

Department of Dairy and Poultry Science Faculty of Veterinary Medicine

Chattogram Veterinary and Animal Sciences University Khulshi -4225, Chattogram, Bangladesh

July, 2023

EFFECT OF LIGHTING DURATION ON THE BEHAVIOUR, WELFARE, AND PERFORMANCE OF BROILER CHICKEN

Abdullah Al Masud

Roll no:0121/04, Reg. no: 937 Session: 2021 - 2022

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects and that all revisions required by the thesis examination committee have been made

Dr. Mohammad Abul Hossain Supervisor Professor Department of Dairy and Poultry Science Faculty of Veterinary Medicine, CVASU

Dr. Md. Saiful Bari Co-supervisor Associate Professor Department of Dairy and Poultry Science Faculty of Veterinary Medicine, CVASU

Mr. Goutam Kumar Debnath Chairman of the Examination Committee Professor and Head Department of Dairy and Poultry Science Faculty of Veterinary Medicine, CVASU

Chattogram Veterinary and Animal Sciences University Khulshi - 4225, Chattogram, Bangladesh

July, 2023

Declaration

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

Author

Acknowledgments

First of all, I like to remember Al-mighty Allah, and all my praise and admiration go to him. Without his mercy and profound kind, it would not be possible to complete the thesis work properly

Then, I am deeply grateful to my supervisor **Professor Dr. Mohammad Abul Hossain**, for his unwavering support and guidance throughout my master's program. His expertise and patience have been invaluable to me and have played a crucial role in the success of this thesis. Later, I am very thankful to **Associate Prof. Dr. Md. Saiful Bari** and former **Prof. Dr. Marjina Akter**, whose valuable support, advice, guidance, and assistance regarding thesis works are invaluable to me for completing my dissertation.

I am grateful to the Advance Studies and Research (CSAR), CVASU, and The Ministry of Science and Technology (MOST) Bangladesh, for providing me with the funds to conduct my research and for all of the resources and support they provided. I would like to thank the Head of the Department of Physiology, Pharmacology, and Biochemistry (CVASU) and the Head of the Department of Animal Science and Nutrition (CVASU) who gave me permission to conduct valuable laboratory tests in their designated laboratories. I would like to extend a special thanks to the senior technical officers of both labs, who went above and beyond to help me with my work.

I also thank my Parents **Mr. Abdul Momen** and **Mrs. Rehena Begum** and my elder brother **MD. Imran Sayeam** and elder sister **Syeda Negath Sultana** who encouraged me and prayed for me throughout the time of my research. I am also thankful to my friends **Shuva Barua, Saikat Barua, Omar Faruque, Nahid Imtiaz, Argha Paul Shuvo, and Imrul Kayes Sujan** for their motivation and assistance during this thesis work. Finally, I would like to thank my cousins **Ahmed Refay Hossain, Hamed Hossain, Arfan Hossain, Rakibul Isalm, Abdullah Al Maruf,** and **Kaiser Hamid Hridoy**, who greatly help me and invest their valuable time during my thesis.

May the Almighty Allah richly bless all of you.

Author

List of contents

Contents	Page no.
Acknowledgment	iv
List of contents	v-vii
List of tables	viii
List of figures	ix
List of appendices	Х
List of abbreviations	xi
Abstract	xii
Chapter 1: Introduction	1-3
1.1 Background	1
1.2 Objectives of this study	3
1.3 Hypothesis of this study	3
1.4 Outline of the thesis	3
Chapter 2: Review of Literature	4 - 12
2.1 Introduction	4
2.2 Lighting duration effects on broiler performance	4
2.3 Lighting duration effects on broiler behaviour	6
2.4 Lighting duration effects on broiler fearfulness	8
2.5 Lighting duration effects on broiler stress	9
2.6 Lighting duration effects on broiler leg health	10
2.7 Conclusion	11
Chapter 3: Material and Methods	13 - 28
3.1 Statements of the experiment	13
3.2 Broiler housing and management	13
3.2.1 Preparation of experimental house	13
3.2.2 Collection of day-old chick and experiment design	14
3.2.3 Brooding day-old chick	14
3.2.4 Floor space	15

3.2.5 Feeding and water management	15
3.2.6 Vaccination and medication	16
3.2.7 Litter management	17
3.3 Lighting management	17
3.4 Sample and data collection	17
3.4.1 Performance-related data collection	18
3.4.2 Behaviour and welfare-related data collection	19
3.4.3 Stress-related data collection	21
3.5 Statistical data analysis	22

Chapter 4: Results	28 – 35
4.1 Production performance	28
4.1.1 Liveweight gain	28
4.1.2 Feed intake	29
4.1.3 Feed conversion ratio	29
4.1.4 Livability	30
4.2 Behavioural observations	30
4.3 Response to observer test	33
4.4 Novel object test	33
4.5 Novel environment test	34
4.6 Tonic immobility and gait score test	34
4.7 Stress level	35

Chapter 5: Discussion	36 - 40
5.1 Effect of lighting duration on broiler performance	36
5.1.1 Live body weight	36
5.1.2 Feed consumption and feed conversion ratio	36
5.1.3 Livability	37
5.2 Effect of lighting duration on broiler behaviour and welfare	38
5.2.1 Behavioural observation	38
5.2.2 Fear tests	39
5.2.3 Stress control	39
5.2.4 Gait score	40

Chapter 6: Conclusion	41
Chapter 7: Limitations and Recommendations	42
References	43 - 53
Appendix	54 - 60
Biography	61

List of Tables

Table no	Table name		Page no.
3.1	Layout of experimental design	-	14
3.2	Chemical composition of provided broiler feed	-	15
3.3	Feeds and feeding times of different types of feeds	-	15
3.4	Vaccination schedule	-	16
3.5	The lighting schedule applied in the experiment	-	17
3.6	Data and sample collection time and assessed numbers.	-	18
3.7	Ethograms for behavioural observations	-	20
3.8	Gait scoring test criteria		21
4.1	Live weight gain (LWG) of broilers at different treatments of	-	28
	lighting regimes		
4.2	Feed intake (FI) of broilers at different treatments of lighting	-	29
	regimes		
4.3	Feed conversion ratio (FCR) of broilers at different treatments	-	29
	of lighting regimes		
4.4	Behavioural activities of broiler chicken observed on day 11	-	31
	under different lighting programs over a period of 24 hours		
4.5	Behavioural activities of broiler chicken observed on day 22	-	31
	under different lighting programs over a period of 24 hours		
4.6	Behavioural activities of broiler chicken observed on day 29	-	32
	under different lighting programs over a period of 24 hours.		
4.7	Broilers' response to the observer under different lighting	-	33
	programs on the 12th, 23th, and 30th days only		
4.8	Broilers' response to the novel object (NO) under different	-	33
	lighting programs on the 12th, 23th, and 30th days only		
4.9	Broilers' response to the novel environment (NE) under	-	34
	different lighting programs on the 30th day only		
4.10	Tonic immobility (TI) and gait score (GS) index of broiler	-	35
	under different lighting programs on the 24th and 30th days		
4.11	Blood heterophil- lymphocytes (HL) ratio and serum cortisol	-	35
	(CORT) test level of broiler under different lighting programs		
	on day 27		

List of Figures

Figure no.	Figure name		Page no.
3.1	Cleaning and disinfection of shed floor.	-	23
3.2	Preparing a brooder before chick arrival	-	23
3.3	Chick release in the brooder with feed and water supplied	-	23
3.4	Check up on baby check to ensure proper environment and feeding.	-	23
3.5	BCRDV vaccination of check by eyedrop on 5th day	-	23
3.6	Chick entry in the treatment's replicates	-	23
3.7	Measuring feed to supply broiler chicken - for record keeping.	-	24
3.8	Preparing waterer to supply clean water to the birds.	-	24
3.9	Litter manipulation and management	-	24
3.10	Different random broiler behaviours	-	24
3.11	Random broiler behaviour at different periods of a day	-	24
3.12	Response to observer test	-	25
3.13	Gait score test	-	25
3.14	Novel object test	-	25
3.15	Novel environment test	-	25
3.16	Tonic immobility test	-	25
3.17	Preparation and blood collection from broilers on 27d	-	26
3.18	Laboratory processing of blood for further tests	-	26
3.19	Microscope view of chicken blood with Wright's stain	-	26
	for DLC test under 100x magnification		
3.20	Sudden death syndrome (SDS) signs symptoms.	-	27
3.21	Postmortem of ascites case	-	27
4.1	Viability (%) of broilers from d1 to 28 days under different lighting regimes	-	30

List of Appendices

Appendix no.	Particulars		Page no
1	Weekly recorded data on broiler performance parameters	-	54
2	Behavioural observation record on 11d.	-	55
3	Behavioural observation record on 22d.	-	55
4	Behavioural observation record on 29d.	-	56
5	Weekly broiler livability and mortality rate record	-	56
6	Response to observer test at different ages.	-	57
7	Novel object test at different ages	-	57
8	Novel environment test of broiler on 30d.	-	58
9	Tonic immobility test and Gait score test of broiler	-	58
10	CBC and CORT level of blood collected on 27d.	-	59
11	Ethical Approval Certificate (EAC) from the Ethics Committee (EC) of CVASU	-	60

List of Abbreviations

DOC	-	Day old chick	Sq.ft	-	Square foot
L:D	-	Lighting or darkness hours	mg/L	-	Milligram per liter
FCR	-	Feed conversion ratio	rpm	-	Round per minute
ME	-	Metabolic energy	%	-	Percentage
СР	-	Crude protein	Sec., s	-	Second
EE	-	Ether extract	cm	-	Centimeter
GDP	-	Gross domestic products	h/d	-	Hours/ day
RMG	-	Ready-made garments	ng/ml	-	Nanogram per
SDS	-	Sudden death syndrome			milliliter
AD	-	Avoidance distance test			
VA	-	Voluntary approach test			
NO	-	Novel object test			
NE	-	Novel environment test			
RO	-	Response to observer test			
TI	-	Tonic immobility test			
GS	-	Gait score test			
HL	-	Heterophil-lymphocyte ratio			
CORT	-	Corticosteroid			
ILD	-	Increasing long-dawn/dusk photoper	iod		
ISD	-	Intermittent short-dawn/dusk photop	eriod		
ACTH	-	Adreno-corticotropic hormone			
IBDV	-	Infectious bursal disease vaccine			
BCRDV	-	Baby chick raniketh disease vaccine			
LED	-	Light emitting diode			
EDTA	-	Ethylene diamine tetra-acetic acid			
RBC	-	Red blood cell			
Hb	-	Hemoglobin			
WBC	-	White blood cell			
DLC	-	Differential leukocyte count			
ANOVA	-	Analysis of variance			
CBC	-	Complete blood cell count			
SEM	-	Standard error of the mean			
CRD	-	Complete randomized design			
ELISA	-	Enzyme-linked immunosorbent assay	У		
CVASU	-	Chattogram Veterinary and Animal S	Sciences	Uni	versity

Abstract

The study was undertaken to investigate the effect of lighting duration on growth performance, behaviour, and welfare of broiler chickens from d1 to 30 days in the floorrearing system. A total of 160 day-old broiler chicks of both sex (Lohmann Meat) was randomly housed into 4 lighting treatments including T₁ [24 hours light (L): 0 hour darkness (D)], T₂ (22L:2D), T₃ (20L:4D), and T₄ (18L:6D) with 4 replicates, each replication had 10 birds in a Completely Randomized Design (CRD). Chicks were exposed to different lighting regimes say 24L: 0D, 22L:2D, 20L:4D (2 x 2h darkness with a 1h lighting interval), and 18L:6D (3 x 2h darkness with 2 x 1h lighting interval) with 18-watt LED bulbs (22lux) for 30d. Data on live-weight gain (LWG), feed intake (FI), feed conversion ratio (FCR), and viability were recorded, where behavioural observation data were taken on 11d, 22d, and 29d. respectively. To evaluate the welfare, fearfulness tests including novel object (NO) test, novel environment (NE) test, response to observer (RO) test, and tonic immobility (TI) test were conducted at different periods with gait score (GS) test for leg health at 30d. At 27d, blood samples were taken to determine the heterophil-lymphocyte (HL) ratio and serum corticosteroid (CORT) level. The results showed that, LWG and FI in the 2nd week were found significantly higher (P<0.05) in $T_1(24L:0D)$ than that of 20L:4D and 18L:6D, which were reversed in the 4th week. But overall LWG, FI, FCR, and viability were nonsignificant (P>0.05) among the treatments. The results of behavioural activities of broiler showed that only inactive resting, feeding, preening, leg/wing stretching running/walking, and drinking activities were significantly influenced by lighting regimes. Broiler performed inactive resting activities significantly or more commonly in continuous lighting program than that of other treatment groups. This behaviour was less responsive when the birds were exposed to increased darkness period. Besides, increased activity of feeding and drinking time were found in reduced lighting periods. In behavioural observations, inactive resting frequencies were significantly lower in the $T_4(18L:6D)$ lighting compared to the $T_1(24L:0D)$ and $T_2(22L:2D)$ on 11d, 22d, and 29d. Feeding, preening and drinking frequencies seemed to improve in T_4 (18L:6D) and $T_3(20L:4D)$ compared to the $T_1(24L:0D)$ and $T_2(22L:2D)$ lighting. According to fear test results, welfare was significantly improved in T_4 (18L:6D) and T_3 (20L:4D) lighting compared to the T₁(24L:0D) and T₂(22L:2D) with lower RO value, higher NO time, better NE values, and lower TI time. The GS, HL ratio, and serum CORT were not influenced (P>0.05) by lighting treatments. It can be inferred that reduced lighting hours or providing increased darkness in the lighting regime of the broiler can improve broiler welfare and potentially boost broiler performances.

Keywords: Boiler chicken, growth performance, lighting, photoperiod, behaviour, welfare, stress