Antimicrobial Resistance Pattern and Identification of Resistant Gene in Bacteria Isolated from Meat and Milk Collected from Local Market of CMA

Dr. Ayesha Ahmed Khan Roll no: 0120/02 Registration no: 884 Session: January- June, 2020

A thesis submitted in the partial fulfillment of the requirements for the degree of Masters of Public Health (MPH)

One Health Institute

CHATTOGRAM VETERINARY AND ANIMAL SCIENCES UNIVERSITY KHULSHI, CHATTOGRAM-4225.

December,2022

STATEMENT OF AUTHOR

I, Dr. Ayesha Ahmed Khan declare that this thesis is submitted for the fulfillment of the requirements for the Degree of Master of Public Health (MPH), One Health Institute, Chattogram Veterinary and Animal Sciences University. All content of the thesis is copyright material of the author if not referenced or acknowledged. Use of the material may only be made with permission of author and author preserves all rights to make any change in the original document.

THE AUTHOR

Antimicrobial Resistance Pattern and Identification of Resistant Gene in Bacteria Isolated from Meat and Milk Collected from Local Market of CMA

Dr. Ayesha Ahmed Khan Roll no: 0120/02 Registration no: 884 Session: January- June, 2020

This is to certify that I have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Supervisor and Chairman of the Examination Committee

.....

Prof. Sharmin Chowdhury, PhD Supervisor & Director

One Health Institute

CHATTOGRAM VETERINARY AND ANIMAL SCIENCES UNIVERSITY KHULSHI, CHITTAGONG-4225, BANGLADESH

December, 2020

ACKNOWLEDGEMENT

All sorts of praises go to the Almighty Allah, who enabled the author to complete this work successfully.

The author wishes heartfelt gratitude to her supervisor **Prof. Dr. Sharmin Chowdhury**, Department of Pathology and Parasitology (DPP), CVASU for her valuable supervision and guidance.

The author gratefully acknowledges all teachers at DPP, CVASU for their valuable provision of information during the research period and also thanks to all the staff of DPP and One Health Institute for their cordial assistance.

The author would like to express her deep sense of gratitude to Advance Study Research, CVASU, Bangladesh Agricultural Research Council (BARC) and Ministry of Science and Technology, People's Republic of Bangladesh for providing necessary research funds.

The author humbly thanks to **Dr. Sirazul Islam** and **Dr. Jahan Ara** for their suggestion, encouragement and support during research work. Finally, the author expresses her thankfulness to her parents, seniors, juniors and well- wishers.

THE AUTHOR

December, 2022

Acknowledgement	iv
List of content	v
List of acronyms and symbols used	ix
List of Tables	х
List of Figures	xi
Summary	xiv
Introduction	01
Objective	05
Review of literature	06
2.1. Public Health Crisis	06
2.2. History of Antibiotics	06
2.3. Persistence Versus Resistance	07
2.4. Origins of resistance	08
2.5. Antibiotic Resistance	09
2.5.1. Antimicrobial Mechanisms of Resistance	09
2.6. Critically Important Antibiotics	12
2.7. Natural resistance of antibiotic	13
2.8. Acquired resistance	14
2.9. Mechanism of Antibiotic resistance	15
2.10. Some Leading Resistant Pathogens	17
2.11. An overview of E. coli and S. aureus, Campylobacter and	18
Salmonella; most frequently noticed bacteria in livestock products	
2.11.1. Structure of E. coli and S. aureus	18
2.11.2. Virulence Factors:	19
2.11.2.1. Virulence Factors of E. coli	19
2.12.2.2. Virulence factors of S. aureus	19
2.13. Method of detecting S. aureus	19
2.13.1. Cultural characteristics of Staphylococcus aureus	19
2.13.2. Biochemical characteristics of Staphylococcus aureus	20
2.13.3. Microscopic Feature	20
2.13.4. Characteristics on growth medium	20
2.13.5. Presumptive Identification	21
2.13.6. Confirmatory Tests	21
2.13.7. Identification of Toxins	21

2.13.8. Nucleic acid amplification tests	21
2.14. Different methods for detection of <i>E.coli</i>	
2.14.1. Cultural characteristics of E. coli	22
2.14.2. Other methods	23
2.14.3. Diseases caused by S. aureus	23
2.14.3.1 Human diseases caused by S. aureus	23
2.14.3.2. Diseases caused by S. aureus in Cattle	24
2.14.4. Diseases caused by E. coli	24
2.14.4.1. Human diseases caused by E. coli	24
2.14.4.2. Cattle diseases caused by E. coli	25
2.15. Classification and nomenclature of salmonella	26
2.15.1. General Characteristics of Salmonella	28
2.15.2. Diseases caused by Salmonella	29
2.15.2.1. Salmonella Infections in Animals	29
2.15.2.2. Salmonella Infections in Humans	30
2.15.3. Diseases Caused by Campylobacter	31
2.15.3.1. Campylobacter Diseases in Human	31
2.15.3.2. Campylobacter Diseases in Animals	32
2.15.4. Antimicrobial Resistance in food from animal origin	33
2.16. Transmission of antimicrobial resistance via livestock	34
2.16.1. Animal-to-human antibiotic resistance transmission pathways	35
2.16.1.1 Direct exposure	35
2.16.1.2. Food chain and food trade	36
2.16.2. The horizontal gene transfer promotes the transmission	36
2.17. Antimicrobial resistance is an unusual public health threat	38
2.17.1. Managing resistance in farm animals	39
2.17.2. Reducing antimicrobial usage in farm animals	39
2.17.3. Alternatives to antimicrobials for farm animals	40
2.18. One-Health approaches to check the AMR issue	41
2.19. Metagenomics of Meat ("Metagenomics")	42
2.19.1. Metagenomics Used in Research	43
Materials and Methods	46
3.1. Study area	46
3.2. Sample collection duration	46

3.3 Study population	46
3.4. Study design	47
3.4.1 Sample size	47
3.5. Sample collection procedure	47
3.5.1. Milk sample	47
3.5.2. Meat sample	47
3.5.3. Transportation:	48
3.6. Bacteriological investigation:	48
3.6.1. Staphylococcus aureus	48
3.6.1.1 Isolation of Staphylococcus aureus	48
3.6.1.2. Identification of Staphylococcus Aureus Coagulase test	49
3.6.2. Escherichia coli	50
3.6.2.1. Isolation of Escherichia coli	50
3.6.2.2 Identification of Escherichia coli	50
3.6.3. Campylobacter jejuni	51
3.6.3.1. Isolation of Campylobacter jejuni	51
3.6.3.2. Identification of Campylobacter jejuni	51
3.6.4. Salmonella spp.	51
3.6.4.1. Isolation of Salmonella spp.	51
3.6.4.2. Identification of Salmonella spp.	52
3.7 Preservation of isolates	52
3.7.1 Staphylococcus aureus, E. coli and Campylobacter jejuni	52
3.7.2 Salmonella	52
3.8. Screening of antimicrobial pattern of Staphylococcus aureus,	52
Escherichia coli, Campylobacter and Salmonella spp.	
3.8.1. Procedure of cultural sensitivity test (CS) test	53
3.9. Molecular detection of bacterial isolates	55
3.9.1. Sub-culturing on blood agar	55
3.9.2. DNA extraction from the isolates	55
3.9.3 PCR reactions for the identification of species	56
3.9.4 Molecular detection of all oligonucleotide primer	57
3.10. Identification of resistant gene	58
3.10.1. Resistant genes in S. aureus	58

3.10.2 Polymerase chain reaction (PCR) to test for the presence	59
of resistant genes in E. coli	
3.10.3. PCR for resistant genes in Campylobacter jejuni	59
3.10.4. PCR for resistant genes in Salmonella spp.	61
3.11. Statistical analysis	61
Results	62
4.1. S. aureus isolated from meat and milk	62
4.1.1. Antimicrobial resistance profile of S. aureus	65
4.1.2. Resistance gene in Staphylococcus aureus	68
4.2. E. coli isolated from milk and meat sample	70
4.2.1 Antimicrobial resistance pattern of Escherichia coli	73
4.2.2 Resistance gene in <i>Escherichia coli</i> isolates	76
4.3 Campylobacter isolated from milk and meat	79
4.3.1 Resistance gene in Campylobacter isolates	84
4.4 Salmonella isolated from milk and meat:	85
4.4.1. Antimicrobial resistant pattern in Salmonella	90
4.4.2 Resistance gene in Salmonella isolates	90
Discussions	92
5.1. Staphylococcus aureus	92
5.2. <i>E. coli</i>	93
5.3 Campylobacter spp.	94
5.4 Salmonella spp.	95
Conclusion	97
Limitation	99
References	100

List of Acronyms and Symbols Used

Abbreviation and symbols	Elaboration
AMR	Antimicrobial Resistance
MDR	Multidrug resistant
%	Percent
>	Greater than
<	Less than
2	Greater than equal
\leq	Less than equal
=	Equal to
°C	Degree Celsius
BHI	Brain Heart Infusion
bp	Base Pair
BPW	Buffered Peptone Water
CDC	Center for Disease Control and Prevention
CFU	Colony Forming Unit
CI	Confidence Interval
CLSI	Clinical and Laboratory Standards Institute
CRE	Carbapenem Resistant Enterobacteriaceae
CSE	Centre for Science and Environment
CS	Culture Sensitivity
CVASU	Chittagong Veterinary and Animal Sciences University
DAEC	Diffusely Adherent E. coli
DNA	De-oxy Ribonucleic Acid
EaggEC	Entero-aggregating E. coli
E. coli	Escherichia coli
EHEC	Enterohemorrhagic E. coli
EMB	Eosin Methylene Blue
ESBL	Extended Spectrum β-Lactamase
ETEC	Enterotoxigenic E. coli
Kb	Kilo Base

List Of Tables

	List of Tables	
Table 2.1	Antibiotics according to their mode of action (Wanda., 2018)	10
Table 2.2	Bacterial targets of antibiotics in clinical use (Chellat et al., 2016)	12
Table 2.3	Organism and Resistance pattern	14
Table 2.4	Scientific taxonomy of E. coli, S. aureus, Campylobacter and Salmonella	28
Table 3.1	Samples Collected from different sources	48
Table 3.2	Typical biochemical reactions shown by any isolate belonging to E. coli	50
Table 3.3:	Concentrations and diffusion zone breakpoints for resistance against	54
	antimicrobials standard for isolates (CLSI, 2011)	
Table 3.4	Oligonucleotide primer sequence of nuc, 16s rRNA and ST11/15 genes	56
Table 3.5	Resistant gene of different bacterial isolates targeted in the present study	57
Table 3.6	Primers used in multiplex polymerase chain reaction systems for the	58
	detection of related antibiotic resistance genes in S. aureus.	
Table 3.7	Primers used for the multiplex polymerase chain reaction for the	59
	identification of E. coli and related antibiotic gene	
Table 3.8	Primers, sequences, and product size in the PCRs used for detection of	60
	resistance genes in Campylobacter jejuni	
Table3.9	Oligonucleotide primer sequences used to detect the selected antimicrobial	61
	genes in the Salmonella spp isolates	
Table 4.1	Prevalence of resistance genes in Staphylococcus aureus from different	64
	milk and meat samples	
Table 4.2	Antimicrobial resistance pattern of S. aureus isolates	66
Table 4.3	Prevalence of resistance genes in E. coli from different Milk and Meat	72
	Samples	
Table 4.4	Antimicrobial resistance pattern of E. coli isolates	74
Table 4.5	Prevalence of resistance genes in Campylobacter from different	81
	milk and meat samples	
Table 4.7	Antimicrobial resistance pattern of Campylobacter isolates	82
Table 4.8	Prevalence of Resistant genes in Salmonella spp from different meat and	87
	milk samples	
Table 4.9	Antimicrobial resistance pattern of Salmonella spp. Isolates	88

S/N	List of Figure	Page
Figure 1	Resistance vs. Persistence	08
Figure 2.1	Antibiotics, effects and mechanisms of Drug Resistance Action	16
Figure 2.2	Classification of the Genus Salmonella	27
Figure 2.3	The U.S. Centers for Disease Control and Prevention; Transmission	36
	of Antimicrobial Resistance	
Figure 2.4	Worldwide economic loss due to AMR	39
Figure 2.5	One health approaches to AMR	41
Figure 3.1	Meat sample collected from different market.	46
Figure 3.2	Confirmatory gene for identification of different pathogens	57
Figure 4: (4.1) A	S. aureus on Mannitol salt agar plates; (4.2) B S. aureus on blood	62-63
	agar plates (β hemolysis); (4.3) C Catalase positive test; (4.4) D	
Figure 4.5:	Gram's staining properties of Staphylococcus aureus Figure 4.6:	63
	Result of PCR assay for the detection of the spa gene (variable bp)	
Figure 4.7	Bacterial zone of inhibition	65
Figure 4.8	Comparing inoculum with McFarland Standard	65
Figure 4.9	MDR pattern of Staphylococcus aureus isolates in Chattogram	67
Figure 4.10	Antibiotic resistance pattern of Staphylococcus aureus in meat	67
Figure 4.11	Resistant gene in staphylococcus aureus	69
Figure 4.12	PCR assay for the detection of the genes in S. aureus; Lane L: 1kb	69
	plus DNA ladder; Lane a: nucgene (395 bp); Lane b: ermC (109	
Figure 4.13	E coli producing large pink color growth on McConkey	70
Figure 4.14	Metallic green sheen on EMB agar	70
Figure 4.15	E. coli; Indole positive	70
Figure 4.16	Gram's Staining property of E. coli	70
Figure: 4.13(A)	E. coli producing large pink color growth on McConkey; (B) 4.14	70
	Metallic green sheen on EMB agar (C)4.15 Indole positive E. coli;	
	(D) 4.16 Gram staining property of E. coli	
Figure 4.17	PCR assay for the detection of the 16s rRNA gene in E. coli; Lane	71
	L:plus DNA ladder; Lane P: Positive control; Lane N: Negative	
	control; Lane 1-5: gene-16s rRNA sized (585 bp) amplicon	
Figure 4.18	Antibiotic resistant pattern of E. coli isolates in Chattogram	75
Figure 4.19	MDR pattern of E. coli isolates in Chattogram division	76
Figure 4.20	Presence of resistant gene in E. coli spp isolates in Chattogram	77

Figure 4.21	PCR assay for the detection of the blaTEMgene (964 bp) in E. coli;	77
	Lane L: 1kb plus DNA ladder; Lane P: Positive control; Lane N:	
	Negative control; Lane 1-7: blaTEMgene	
Figure 4.22	PCR assay for the detection of the blaCTX-Mgene (557 bp) in E.	78
Figure 4.23	PCR assay for the detection of the tetKgene (502bp) in E. coli;	78
Figure (A) 4.24	Lane L: 1kb plus DNA ladder; Lane 1-11: tetK gene Anaerobic jar with CO2 sachet; (B)4.25 Gram staining property of	79
	Campylobacter spp 4.26 and 4.27 (CtoD) Cultural Response: Good-	
Figure 4: 4.28	luxuriant growth of Campylobacter spp. Result of PCR assay for 16S rRNA gene of Campylobacter spp	80
	isolates; Lane L: 1kb plus DNA ladder; Lane P: Positive control;	
	Lane N: Negative control; Lane 1 and 2: 16S rRNA gene-sized (857	
Figure 4.29	Result of PCR assay for mapA gene of C. jejuni isolates; Lane L:	80
	1kb plus DNA ladder; Lane P: Positive control; Lane N: Negative	
Figure 4.30	control; Lane 1, 2 and 3: mapA gene-sized (589 bp) amplicon Antibiotic resistant pattern of Campylobacter isolates in	83
Figure 4.31	MDR pattern of Campylobacter spp. isolates in Chattogram	83
Figure 4.32	Presence of resistant gene in Campylobacter spp isolates in	84
Figure (A)4.33	Characteristic growth of Salmonella strain on Blood Agar: S. typhi	85
	and S. Para typhi produce non-hemolytic smooth white colonies;	
	(B)4.34 On MacConkey Agar: Non-lactose fermenting smooth	
Figure 4.37:	colonies i.e., pale colonies; (C)4.35 On Xylose Lysine Result of PCR assay for stx gene of salmonella isolates; Lane M:	86
	1kb plus DNA ladder; Lane P: Positive control; Lane N: Negative	
Figure 4.38 Figure 4.39	Antibiotic Resistance Pattern of Salmonella isolates in Chattogram MDR pattern of Campylobacter spp. isolates in Chattogram	89 89
Figure 4.40	Presence of resistant genes in Salmonella isolates in Chattogram	90
Figure 4.41	PCR assay for the detection of the salmonella genes; Lane L: 1kb	91
	plus DNA ladder; Lane a: blaZ gene (517bp); Lane b: tetK(169 bp)	

SUMMARY

Antimicrobial resistance (AMR) is known as a silent pandemic; an emerging global public health issue. The problem of AMR is similarly salient and prevalent in animals. From a public health perspective, AMR in dairy cattle, poultry meat can also jeopardize human health by the potential dissemination of AMR pathogens to humans via consumption of infected dairy products or direct contact with infected poultry and animal

meat. Harshly, the dairy and poutry industry is increasingly confronted with AMR *Staphylococcus aureus* (*S. aureus*), *Escherichia coli* (*E. coli*), *Campylobacter* and *Salmonella*. This study was designed to investigate the multidrug- resistant pattern along with the most frequently isolated resistant genes of *S. aureus*. *E. coli*, *Campylobacter* and *Salmonella* from buffalo milk, buffalo meat, goat meat, beef meat, goat milk, layer meat and poultry meat in the Chittagong metropolitan area of Bangladesh. A total of 130 meat and milk samples including 40 poultry products (broiler & layer chicken meat) and 90 large (buffalo and cattle) and small (goat) animal products were collected from the study population.

Isolation and identification of *S. aureus, E. coli, Campylobacter* and *Salmonella* were done following the standard bacteriological method. The nuc gene,16s rRNA and ST11, ST15 gene were tabbed in molecular identification of *S. aureus, E. coli, Campylobacter* and *Salmonella respectively*.

In this study among 7 isolates of *S. aureus* four in broiler meat (20%, 95% CI 5.73 - 43.6%), one in beef meat (5%, 95% CI 0.12% - 24.8%), one in buffalo meat (10%, 95% CI 0.25% - 44.5%), one in Goat meat (5%, 95% CI 0.12% - 24.8%) were confirmed.

Whereas among 47 isolates five in broiler meat (25%, 95%CI 8.65%- 49.1%), nine in beef meat (45%, 95%CI 23.05%- 68.45%), four in buffalo meat (40%, 95%CI 12.15% - 73.76%), thirteen in goat meat (65%, 95%CI 40.78%- 84.60%), six in goat milk (24%, 95%CI 9.35%- 45.12%), seven in buffalo milk (46.67%, 95%CI 21.26%-73.41%), three in layer meat (15%, 95%CI 3.2%- 37.8%) were confirmed as *E. coli*.

Also twenty-one isolates were confirmed as *Campylobacter* strain out of 130 samples; Nine in layer meat (45%, 95% CI 23.05%-68.47%), twelve in broiler meat (60%, 95% CI 36.05%-80.88%). On the other hand, a total of 5 isolates were confirmed as *Salmonella* strain out of 130 meat and milk samples by PCR. One in beef meat (5%, 95% CI 0.12%-24.8%), four in buffalo milk (26.67%, 95% CI 7.78%- 55.10%). Among the positive *S. aureus* isolates, showed resistance against all tested antibiotics except Meropenem (MEM). Highest number of isolates (100%) in broiler meat was resistant against Tetracycline (TE), followed by 75% to Oxytetracycline (OT) and 50% to Ceftriaxone (CRO), Oxacillin (OX) and others. All *S. aureus* isolates were multi drug resistant, 57.14 % of the isolates had resistance against 4 to 6 tested antimicrobials and 42.85% had resistance to more than 7 antimicrobials.

E. *coli* isolates were characterized with the presence of AMR genes. Afterward, the positive isolates were screened against antimicrobials using the disc diffusion technique. At a fleeting glance, alarmingly in buffalo milk, broiler meat, cattle meat and goat meat, 100% *E. coli* isolates of CMA showed resistance to Sulphathiazole- trimethoprim (SXT), Erythromycin (ERE), Tetracycline (TE) and Ampicillin (AMP), followed by in buffalo milk 85.71% against Ciprofloxacin (CIP), 57.14% against Gentamycin (CN), and Neomycin (N). In buffalo meat, 100% resistance showed only against Ciprofloxacin (CIP) and Ampicillin (AMP). All 47 *E. coli* isolates were multi drug resistant. 57.44% isolates were resistant to 4-6 antimicrobials and 40.42% were resistant to more than 7 tested drugs.

In Layer meat 100% *Campylobacter* isolates of Chattogram area showed resistance to Erythromycin (ERE), Streptomycin (S) and Azithromycin (AZM) followed by 88.88% against Ciprofloxacin (CIP) and Sulphamethoxazole-trimethoprim (SXT), following 77.77% resistance against Cefotaxime (CTX), Ceftriaxone (CRO) and Ceftazidime (CAZ). In broiler meat, 100% *Campylobacter* isolates showed resistance to Erythromycin (ERE), Streptomycin (S) and Azithromycin (AZM) followed by 83.33% against Ciprofloxacin (CIP) and Sulphamethoxazole-trimethoprim (SXT). All 21 *Campylobacter* isolates were multi drug resistant. 23.81% isolates were resistant to 4-6 antimicrobials and 76.19% were resistant to more than 7 tested drugs.

Salmonella spp. isolates of the study area from buffalo milk showed 100% resistance against Ciprofloxacin (CIP), followed by 75% against Tetracycline (TE), Sulphamethoxazole-Trimethoprim (STX), Streptomycin and 25% against Erythromycin (ERE) and Gentamycin (CN). All 5 *Salmonella* isolates were multi drug resistant. 40 % isolates were resistant to 2-3 antimicrobials and 60% were resistant to more than 4-6 tested drugs.

Among the 7 *S. aureus* isolates had ESBL producing 2 *blaz* gene in broiler meat, cattle meat and 1 in goat meat and Erythromycin producing 1 *Erm* (*B*) gene in broiler meat and 1 in buffalo meat. Whereas, 1 *Erm* (*C*) gene in broiler meat, 1 in buffalo meat and 1 in goat

meat was identified. Tetracycline producing 3 Tet(K) gene found in broiler meat and 1 in buffalo meat.

Within 47 isolates of *E. coli* 4 *Sul1* gene(sulfonamide) gene and 1 *Tet* (*B*) (tetracycline) and 1 *AAC*(*IV*) gene were identified in goat meat and 2 *Sul1*, 1*Tet* (*B*) and 1 *AAC*(*IV*) gene were identified in buffalo milk. Also found 3 *blaCMY* gene, 4 *Sul1*, 2*Tet* (*B*), 3*AAC*(*IV*) and 1 *ERE* gene in cattle meat. In layer meat, only 1*Sul1* and 1*Tet* (*B*) gene found. In goat milk, 2 *Sul1*, 3*Tet* (*B*), 2 *Tet* (*C*) and 1 *AAC*(*IV*) gene were identified in *E. coli* isolates. Very few *Campylobacter* isolates of Chattogram area was identified with antimicrobial resistant gene. 3 isolates had *blaTem* gene both in broiler and layer meat. 2 isolates in broiler meat had *Tet* (*C*) gene.

2 *Sul1* gene (sulfonamide) and 1 *Tet*(*A*)gene was identified in *Salmonella* spp.isolates in buffalo milk whereas 1 *blaSHV*,1 *blaCMY* and 1 *Sul1* identified in cattle meat.

Conclusively, the study findings will provide ample statistical evidence to develop strategies for improvement of antimicrobial stewardship, rejuvenate the antimicrobial drug channel and to develop efficacious and sustainable alternative approaches to tackling AMR crisis both in humans and livestock.