ACKNOWLEDGMENTS

I am grateful to Almighty Allah who enabled me to complete the research work and write up the dissertation successfully for the degree of Master of Science (MS) in Fish Biology and Biotechnology under the Department of Fish Biology and Biotechnology, Chittagong Veterinary and Animal Sciences University (CVASU).

It is a matter of honor and pride for me to express my sincere cordiality and deep sense of gratitude to my respectable supervisor **Md. Moudud Islam**, Assistant Professor and Head, Department of Fish Biology and Biotechnology, CVASU for his kind co-operation, worthy suggestion and helpful remark during the study periods as well as reviewing the manuscript.

I humbly thankful to my co-supervisor **Dr. Sk. Ahmad-Al-Nahid**, Assistant Professor and Head, Department of Fisheries Resources Management, Faculty of Fisheries, CVASU for his inspiration, valuable advice and guidance during the research work.

I am greatly indebted to **Md. Mahiuddin Zahangir**, Assistant Professor, Department of Fish Biology and Biotechnology, CVASU for his valuable advice, scholastic guidance, suggestions and inspiration.

I sincerely express deepest sense of gratitude and indebtedness to our honorable Vicechancellor **Prof. Dr. Goutam Buddha Das** and **Prof. Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU for their supportive administrative coordination to fulfill my research.

I would like to convey my gratefulness to **Dr. Md Asaduzzaman**, Assistant Professor, Department of Marine Bio-resources Science, Faculty of Fisheries, CVASU for his inspiration, technical support and kind suggestion during the research work.

I sincerely thank all postgraduate students and technical staffs of Department of Fish Biology and Biotechnology for their encouragement and support during sample collection and laboratory work.

Last but not least, I express my deepest sense of gratitude to my beloved parents and friends for their support, blessings and encouragement.

The author

December, 2018

LIST OF CONTENTS

Chapter	Title	Page No.
	Authorization	ii
	Acknowledgements	iv
	List of tables	vii
	List of figures	viii
	List of plates	ix
	List of appendices	Х
	Abbreviations and symbols	xi
	Abstract	xii
Chapter 1	Introduction	1-4
	1.1 Aim and objectives of research	4
Chapter 2	Review of Literature	5-9
Chapter 3	Materials and Methods	10-18
	3.1 Description of the study area	10
	3.2 Description of experimental system	10
	3.3 Preparation of aquarium and recirculatory	10
	system	
	3.4 Collection of fish and conditioning	11
	3.5 Experimental design	12
	3.6 Stocking of fish	12
	3.7 Cleaning of aquarium	13
	3.8 Feed formulation and preparation	13
	3.8.1 Selection of ingredients and diet	13
	formulation	14
	3.8.2 Diet preparation	14
	3.9 Feeding rate and frequency	15

	3.10 Sampling of the experimental fish	16
	3.11 Water quality parameters	17
	3.12. Parameters studied for this experiment	17
	3.12.1. Parameters studied for growth	17
	performance and feed utilization of fish	
	3.12.2. Blood samples and hematological	18
	parameters	
	3.13 Statistical analysis	18
Chapter 4	Results	19-26
	4.1 Water quality parameters	19
	4.2 Growth Performance and feed utilization	20
	4.2.1 Growth Performance	21
	4.2.2 Feed Utilization	22
	4.3 Hematological parameters	24
Chapter 5	Discussion	27-29
Chapter 6	Conclusions	30
-		
Chapter 7	Recommendations and future perspective	31
Chapter 8	References	32-37

LIST OF TABLES

Table No.	Title	Page No.
Table 1	Proximate composition of feed (% dry matter	14
	basis)	
Table 2	Formulation of experimental diets (Pearson	15
	square method)	
Table 3	Physico- chemical parameters of the aquaria	20
	during the rearing period of P. hypophthalmus.	
Table 4	Mean hematological parameters of <i>P</i> .	24
	hypophthalmus at different culture period under	
	different inclusion level of pepsin in diet.	
	Values with different superscripts differ	
	significantly ($P < 0.05$). (Data are presented	
	with mean \pm S.E.)	

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1	Average weight gain of P. hypophthalmus after	21
	90 days culture period under different inclusion	
	levels of pepsin in diet. Values with different	
	superscripts differ significantly ($P < 0.05$).	
	(Vertical bars= \pm S.E.)	
Figure 2	Specific growth rate of P. hypophthalmus after	22
	90 days culture period under different inclusion	
	levels of pepsin in diet. Values with different	
	superscripts differ significantly ($P < 0.05$).	
	(Vertical bars= \pm S.E.)	
Figure 3	FCR value of P. hypophthalmus after 90 days	23
	culture period under different inclusion levels of	
	pepsin in diet. Values with different superscripts	
	differ significantly ($P < 0.05$). (Vertical bars=	
	±S.E.)	
Figure 4	FCE value of P. hypophthalmus after 90 days	23
	culture period under different inclusion levels of	
	pepsin in diet. Values with different superscripts	
	differ significantly ($P < 0.05$). (Vertical bars=	
	±S.E.)	
Figure 5	PER value of P. hypophthalmus after 90 days	24
	culture period under different inclusion levels of	
	pepsin in diet. Values with different superscripts	
	differ significantly ($P < 0.05$). (Vertical bars=	
	±S.E.)	

viii

LIST OF PLATES

Plate No.	Title	Page No.
Plate 1	Pangasius hypophthalmus	2
Plate 2	Setting up aquarium and recirculatory system	11
Plate 3	Conditioning of fish	12
Plate 4	Weighing of fish before stocking	12
Plate 5	Fish stocked in aquarium	13
Plate 6	Weighing of fish before dissection	16
Plate 7	Collection of blood in vacutainer tube	16
Plate 8	Analysis of blood samples by hematology	17
	analyzer	

LIST OF APPENDICES

Appendix No.	Title	Page No.
Appendix I	Growth performance and feed utilization of P.	38-43
	hypophthalmus under different pepsin doses.	

Appendix II Hematological parameters of *P. hypophthalmus* 44-53 under different pepsin doses

Abbreviations and Symbols

Abbreviations Full MT Metric Ton : % : Percentage Ha Hactor : et al. Associates : Kg Kilogram : Alpha А : Analysis of Variance ANOVA : G Gram : L Liter : В Beta : Mg Miligram : Mm Millimeter : Wt Weight : Cm Centimeter : Minute Min : μL^{-1} Microgram per Liter : Η Hour : S.E. Standard Error : SPSS Statistical package for social science : °C **Degree Celcius** : Ppm : Parts Per Million mg/l Miligram Per Liter : cells/µl : **Cells Per Microliter** Dl Decilitre : Fl Femtoliters : Picograms Pg : < : Smaller than

ABSTRACT

This study was conducted to investigate the effects of exogenous protease enzyme (pepsin) on the growth performance, feed utilization and hematology parameters of juvenile Thai pangus (Pangasius hypophthalmus) using 90 days feeding trials. The 35% crude protein diet was prepared by adding different feed ingredients along with 0, 0.25, 0.50, 0.75, and 1.0 g of pepsin per kg feed as T1(control), T2, T3, T4 and T5 respectively. Experimental results showed significant (P < 0.05) differences in growth performance in terms of average weight gain, specific growth rate (SGR) and feed utilization in terms of feed conversion ratio (FCR), feed conversion efficiency (FCE) and protein efficiency ratio (PER) in fish fed with 0.5g pepsin per kg feed (T3) compared to control (T1). In case of hematological parameters, results showed significant (P<0.05) differences in red blood cells (RBCs), white blood cells (WBCs), blood glucose, hemoglobin (Hb), and mean corpuscular volume (MCV) in fishes fed with 0.5g pepsin kg⁻¹ (T₃) compared to control. There was no significant differences (P>0.05) in hematocrit (HCT), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) in fishes fed with 0.5g pepsin per kg (T_3) compared to control. This results suggest that pepsin enzyme supplementation with formulated feed improve the growth, feed utilization, and blood parameters of P. hypophthalmus.

Key words: Aquarium, Feed utilization, Growth performance, Hematology parameters, *Pangasius hypophthalmus*, Pepsin.