ACKNOWLEDGEMENT

All sorts of praises go to the **Almighty Allah**, whose blessing enabled the author to complete thesis successfully for the degree of Masters of Science under the Dept. of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh. The author wishes heartfelt gratitude to the supervisor Prof. **Dr. Sharmin Chowdhury**, Department of Pathology and Parasitology (DPP), CVASU for her valuable supervision and guidance. The author sincerely thanks to co-supervisor Prof. **Dr. Md Shafiqul Islam**, Associate Professor at the Department of Pathology and Parasitology, CVASU for his suggestions and guidance.

The author also gratefully acknowledges Prof. **Dr. Mohammad Alamgir Hossain**, Dean of the Faculty of Veterinary Medicine (FVM), Prof. **Dr. Mohammad Mahbubur Rahman**, Head of the Department of Pathology and Parasitology, Prof. **Dr. Md. Masuduzzaman**, Prof. **Dr. AMAM Zonaed Siddiki**, Prof. **Dr Md Abdul Alim**, Prof. **DR. Towhida Kamal** of Department of Pathology and Parasitology (DPP), CVASU for their valuable provision of information during the research period. I am also indebted to all the staff of the DPP, and One Health Institute, CVASU for their cordial assistance. It's the author's immense pleasure to thank **DR. Md. Sirazul Islam**, for providing support to extend the spectrum of this thesis work. The author humbly thanks to **DR. Jahan Ara**, DR. Md. Masud Parves Munna, DR. Abid Hasan, for their suggestions, encouragement and support during the research work.

The author would like to express his deep sense of gratitude to the Director of Advance Study and Research, CVASU; Bangladesh Agricultural Research Council (BARC) and Ministry of Science and Technology, People's Republic of Bangladesh for providing necessary research funds for the research.

Finally, the author expresses his thankfulness to his parents, seniors, juniors and wellwishers.

THE AUTHOR

Md. Hafizar Rahman

December, 2022

Table of content

Acknowledgement	i
List of content	ii
List of acronyms and symbols used	v
List of tables	vii
List of figures	vii
Summary	viii
Chapter 1: Introduction	12
Chapter 2: Review of literature	14
2.1. An overview of Salmonella	14
2.1.1. Classification and nomenclature	14
2.1.2. Morphology	14
2.1.3. Growth requirements	15
2.1.4. Antigenic structure	15
2.1.5. Biochemical properties	15
2.1.8. Transmission of Salmonella	16
2.1.7. The Factors Affecting Salmonella Colonization in Chickens	16
2.2. Salmonella infections in layer chicken	20
2.3. Salmonella infections in broiler chicken	20
2.4. The Overall Prevalence of Salmonella in poultry	21
2.5.1. The Antimicrobial Resistance Pattern of Salmonella Infection	22
2.5.2. The Resistance to Penicillins	25
2.5.3. The Resistance to Cephalosporins	26
2.5.4. The Resistance to Carbapenems	26
2.5.5. The Resistance to Fluroquinolones	27
2.5.6. The Resistance to Aminoglycosides	28
2.5.7. The Resistance to Macrolides	28
2.5.8. The Resistance to Lincosamides	29
2.5.9. The Resistance to Tetracyclines	29
2.5.10. The Resistance to Phenicols	30
2.5.11. The Resistance to Rifampicin	30
2.5.12. The Resistance to Glycopeptides	31
2.5.13. The Resistance to Sulphur Drugs	31
2.5.14. The Resistance to Polymyxins	32
2.3. Antimicrobial resistant gene in Salmonella	32
2.4. Diagnosis of Salmonella	33

2.4.1. Serological diagnosis	33
2.4.2. Molecular diagnosis	33
2.5. Pathological Findings	33
2.6. The Status of non-typhoidal Salmonella in Bangladesh	35
2.7. The Pathomicrobial studies on <i>Salmonella</i> sp infection in broiler chickens	35
Chapter 3: Materials and methods	37
3.1 Study area	37
3.2 Sample collection duration	37
3.3. Biological sample collection	37
3.4. Data collection	37
3.5 Bacteriological Investigation	38
3.5.1 Isolation of <i>Salmonella</i> sp	38
3.5.2 Sub-culturing on blood agar	38
3.5.3. Preservation of isolates	
	38
3.6. Molecular detection of Salmonella	39
3.6.1 DNA extraction from the isolates	39
3.6.2 Identification of Salmonella by polymerase chain reaction (PCR)	39
3.7 Antimicrobial susceptibility testing (AST)	40
3.7.1 Detection of antimicrobial resistance genes	40
3.8. Histopathological study of <i>Salmonella</i> sp	41
3.8.1. Equipment and appliances for histopathology	41
3.8.2. Collection of samples and processing	41
3.8.3. Routine hematoxylin and eosin staining procedure	42
3.8 Statistical analysis	43
Chapter 4: Results	44
4.1. Results of postmortem findings of <i>Salmonella sp</i> infection in broiler chicken	44
4.2. The histopathological examination of <i>Salmonella</i> sp infection in broiler chicken	44
4.3. Prevalence of <i>Salmonella</i> sp infection in farm level	45
4.4. Analysis of risk factors	45
4.4.1. Prevalence of <i>Salmonella</i> sp according to potential explanatory variables in different upazila in Chattogram	45
4.4.2. Univariable association of risk factors with the occurrence of <i>Salmonella</i> sp in broiler chickens at farm level	47
4.4.3. The Antimicrobial resistance profile and percentage of multidrug resistance to <i>Salmonella</i> sp. isolates	49
4.4.4. The distribution of antimicrobial resistance genes	50
4.4.5. The results of growth characteristics of Salmonella sp in XLD	52

and Blood agar	
4.4.6. The result of DNA extraction, PCR and culture sensitivity test of	53
Salmonella sp	
Chapter 5: Discussion	54
Chapter 6: Conclusion	60
Chapter 7: Limitation: recommendations and future perspectives	61
Appendix	62
References	64
Biography	78

Frequently used abbreviation

Abbreviation and	Elaboration
symbols	
AMR	antimicrobial resistance
MDR	multidrug resistant
%	percent
>	greater than
<	less than
2	greater than equal
<u> </u>	less than equal
=	equal to
°C	degree celsius
BHI	brain heart infusion
bp	base pair
BPW	buffered peptone water
CDC	center for disease control and prevention
CI	confidence interval
CLSI	clinical and laboratory standards institute
CRE	carbapenem resistant enterobacteriaceae
CSE	centre for science and environment
CS	culture sensitivity
CVASU	Chattogram veterinary and animal sciences university
DNA	de-oxy ribonucleic acid

μL	microliter
mA	milli ampere
MCR	plasmid-mediated colistin resistance
MFS	major facilitator superfamily
mL	milliliter
Mm	millimeter
MRSA	methicillin resistant staphylococcus aureus
OR	odds ratio
PCR	polymerase chain reaction
Rpm	rotation per minute
ST	heat stable toxin
Stx	shiga toxin
TAE	tris acetate edta
VTEC	verotoxigenic E. coli
WHO	world health organization
w/v	weight/volume
CIP	ciprofloxacin
TE	tetracycline
CRT	ceftriaxone
SXT	sulfamethoxazole & trimethoprim
CN	gentamycin

LIST OF TABLES

Table 2.1	Taxonomic names of subspecies	14
Table 3.1	The primer sequences for the polymerase chain reaction (PCR) used to identify genes for antibiotic resistance	40
Table 4.1	Prevalence of Salmonella infection according to different factors at farm level	46
Table 4.2	Univariable logistic regression of Salmonella infection in farm level	48
Table 4.3	The percentage of multidrug resistance to <i>Salmonella</i> spp. isolates (Broiler chicken, N=8)	49
Table 4.4	The occurrence of antimicrobial resistance genes among Salmonella isolates $[n = 8]$ from broiler chicken	51

LIST OF FIGURES

Figure 2.1	Postmortem findings of Salmonella affected broiler chicken. (A), (B)	44
Figure 2.2	Diffuse necrosis in liver (A) and congestion and infiltration of lymphocyte (B, C, D)	45
Figure 4.1	The antimicrobial resistance pattern of Salmonella isolates [n = 8]	50
Figure 4.2	Salmonella sp on Xylose Lysine Deoxycholate	52
Figure 4.3	Salmonella sp on blood agar plates (A), (B)	52
Figure 4.4	Gram's staining properties of Salmonella sp	52
Figure 4.5	DNA extraction for the detection of Salmonella sp	53
Figure 4.6	PCR assay for the detection of Salmonella sp.	53
Figure 4.7	Bacterial zone of inhibition.	53
Figure 4.8	Bacterial zone of inhibition (A), (B)	53
Figure 4.9	Comparing inoculum with McFarland Standard	53

SUMMARY

Globally, antimicrobial resistance (AMR) is a public health concern, since antibiotics are among the most prescribed classes of drugs in humans and animals. Random use of antimicrobials in the poultry industry is considered as a contributing factor for AMR that can jeopardize human health through the potential dissemination of AMR pathogens. It is noteworthy that Salmonella is one of the bacterial groups considered to be of high priority in surveillance programs in the food chain and infectious diseases in poultry. Information on the circulation of Salmonella strains at the commercial poultry farm level is limited in many parts of the world. The present study aimed to determine the prevalence and stereotyping of Salmonella strains circulating in the broiler farm environment with their detailed AMR profiling. Pooled cloacal samples were collected randomly from commercial broiler farms in Chattogram district, Bangladesh. Then the standard bacteriological procedure was followed to isolate Salmonella sp, and identification was confirmed by the basis of morphology, cultural characters, and genus-specific polymerase chain reaction (PCR). After phenotypic characterization of the resistance profile against commonly used antibiotics by disc diffusion technique, all strains were screened by PCR for some selected resistance genes. Out of the 105 samples, Salmonella sp was isolated and identified from 8 samples. In antimicrobial sensitivity testing, 100% isolates showed resistance to ampicillin and amoxicillin, and 87.5% to gentamycin followed by tetracycline, and ciprofloxacin (75%), doxycycline (50%), Trimethoprim/Sulfamethoxazole, and Ceftriaxone (25%). The results of PCR assays revealed that all the eight isolates were carrying the *tetA* gene, the *tetB* and 16.67% the *tetC* gene. The prevalence of the isolates bearing the *Sul-I* gene, *blaTEM*, *blaCTX-M* were 100%, 87.5%, and 50%, respectively. The present study was conducted to find out the prevalence of poultry Salmonella in broiler chickens and to find out that there is a great risk to securing healthy poultry products due to the circulation of the multi drug resistant (MDR) Salmonella sp.

Keywords: Prevalence, Antimicrobial resistance, tetA, tetB, tetC, sul-1, blaTEM, blaCTX-M gene,