

Prevalence of *Campylobacter* and Non-typhoidal *Salmonella* in Chicken and Chicken Products in South and Southeast Asia: A Systematic Review and Meta-analysis

Nurun Nahar Chisty

Roll No: 0120/01 Registration No: 821 Session: January-June, 2020

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Epidemiology

> Department of Medicine and Surgery Faculty of Veterinary Medicine

Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE 2022

Authorization

I hereby declare that I am the sole author of the thesis submitted in fulfillment of the requirements for the Degree of Master of Science (MS) in Epidemiology in the Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU). I authorize CVASU to lend this thesis or to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Nurun Nahar Chisty, DVM JUNE 2022

Prevalence of *Campylobacter* and Non-typhoidal *Salmonella* in Chicken and Chicken Products in South and Southeast Asia: A Systematic Review and Meta-analysis

Nurun Nahar Chisty Roll No: 0120/01

Registration No: 821 Session: January-June, 2020

This is to certify that we have examined the above Master's thesis and have found that it is complete and satisfactory in all respects, and all revisions required by the thesis examination committee have been made

Supervisor **Prof Md. Ahasanul Hoque, PhD**

Department of Medicine and Surgery Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University, Bangladesh Co-supervisor Guillaume Fournié, PhD

Senior Research Fellow Veterinary Epidemiology, Economics and Public Health The Royal Veterinary College, UK

Chairman of the Examination Committee

Prof. Pankaj Chakraborty, PhD

Head of Department Department of Medicine and Surgery Faculty of Veterinary Medicine

Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

JUNE 2022

Dedication

This Master's thesis is dedicated to the poultry farmers

Acknowledgements

I would like to express my deepest gratitude and salutation to the Almighty Allah for giving me the strength and opportunity to complete the research and thesis successfully for the degree of Master of Science (MS) in Epidemiology under the Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University (CVASU), Bangladesh.

I would like to express my appreciation and gratitude and the best regards to my mentor and supervisor Professor Md. Ahasanul Hoque. His strict supervision and important suggestions helped me a lot complete this thesis. Working with him was the best experience in life.

It is a pleasure to convey my thanks and gratitude to my co-supervisor Dr Guillaume Fournié, Senior Research Fellow, The Royal Veterinary College and Research Coordinator (Programme-2), One Health Poultry Hub, for his valuable advice, guidance and inspiration and resourceful suggestions during the study period.

I would like to give thanks to Professor Pankaj Chakraborty, Head, Department of Medicine and Surgery for his encouragement and guidance. I would like to give thanks to Professor Omar Faruk Miazi, Co-ordinator of Advanced Studies and Research, CVASU, for his administrative support in relation to the thesis approval.

I would like to express my gratitude towards Dr. Md Saiful Bari, Associate Professor, Department of Dairy and Poultry Science, CVASU and Dr. Mahbub Alam, Associate Professor, Department of Animal Science and Nutrition for their technical support and guidance.

My heartiest thanks to Mr. Probir Kumar Ghosh, Assistant Scientist, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) and Dr. Sukanta Chowdhury, Scientist, icddr,b, for teaching me and guiding me with the analysis of data.

This work was supported by the UKRI GCRF One Health Poultry Hub [Grant No. BB/S011269/1], one of twelve interdisciplinary research hubs funded under the UK government's Grand Challenge Research Fund Interdisciplinary Research Hub initiative.

I would like to take the opportunity to convey my indebtedness towards Professor Fiona Tomley, Principal Investigator, One Health Poultry Hub, for allowing me to work with this great team and supporting my research.

I would like to express my gratefulness towards my Systematic Review Team- Lorraine Chapot, Sophie Hedge, Professor Ruwani Kaluaphana, Dr. Thanh Son, Professor Gowthaman Vasudevan, Dr. Alagates, Dr. Balakrishnan, Dr. Neha Rajpara, Dr. Twinkle and Dr. Tran Thi Nath for helping me in the double screening process and data extraction. Without their input, this study could not be completed.

Very special thanks to Dr. Kazi Chamonara Mahi for her kind and quality support in the data extraction process.

Special thanks to Dr. Abu Sayeed and Dr. Tridip Das for their support during initiation of this study.

My profound gratitude to Dr. Rashed Mahmud, Research Manager, One Health Poultry Hub Bangladesh, for his appreciation and guidance.

I would like to thank senior and junior MS fellows of Epidemiology for their constant support. I would like to thank the office staffs of Department of Medicine and Surgery, for their kind co-operation during the course.

Finally, I am forever indebted to my beloved parents Md. Kamrul Ahsan and Taslima Ahsan for their immense sacrifice, spontaneous blessings and encouragement.

Nurun Nahar Chisty

June 2022

Table of Content

4.8.1. Publication bias in <i>Campylobacter</i> studies	27
4.8.2. Publication bias in non-typhoidal Salmonella studies	
Chapter-5: Discussion	29
Chapter-6: Conclusion, Recommendation and Future Direction	
6.1. Recommendations	
6.2. Future directions	34
References	
Appendices	61
Biography	140

List of Tables

Title	Page
Table 3.1. Grading of study quality based on study methodology criteria	12
Table 4.1. Univariable meta-regression analyses of selected outcome subgroups for <i>Campylobacter</i> studies	25
Table 4.2. Univariable meta-regression analyses of selected outcome subgroups for non-typhoidal Salmonella studies	26

List of Figures

Title Page
Figure 4.1. Flowchart of selected <i>Campylobacter</i> studies 13
Figure 4.2. Flowchart of selected non-typhoidal Salmonella studies 14
Figure 4.3. Map showing number of <i>Campylobacter</i> studies in chicken and chicken egg across south and south-east Asian countries between 2002 and 2019 15
Figure 4.4. Map showing number of non-typhoidal <i>Salmonella</i> studies in chicken and chicken egg across south and southeast Asian countries between 1997 and 2018 17
Figure 4.5. Breakdown of <i>Campylobacter</i> species in the tested positive samples 21
Figure 4.6. Breakdown of non-typhoidal <i>Salmonella</i> serovars in the tested positive chicken samples
Figure 4.7. Breakdown of non-typhoidal <i>Salmonella</i> serovars in the tested positive egg samples
Figure 4.8. Funnel plot for examination of publication bias in sample unit data for <i>Campylobacter</i> 27
Figure 4.9. Funnel plot for examination of publication bias in farm unit data for <i>Campylobacter</i> 27
Figure 4.10: Funnel plot for examination of publication bias in sample unit data for non-typhoidal <i>Salmonella</i> (studies with chicken samples) 28
Figure 4.11: Funnel plot for examination of publication bias in sample unit data for non-typhoidal <i>Salmonella</i> (studies with egg samples) 28

Abbreviation	Elaboration
Adj	Adjusted
AF	Afghanistan
Agarose	agarose gel diffusion
В	Biochemical tests
BD	Bangladesh
BE	Boiled egg
ВН	Bhutan
Both	Dead and clinically healthy
Br	Breeder
С	Culture
САМ	Cambodia
Car	Carcass
CC	Caecal content
CDC	Centers for Disease Control and Prevention
СН	Clinically healthy
CI	Confidence interval
Cl	Cloacal swab
СМ	Cooked meat
Со	Country
Coc	Cockerel
Con	Convenient sampling
Cr	Сгор
CS	Cross sectional
D	District
DE	Dead embryo
Е	Egg
EB	Exotic broiler
EC	Egg content
EFSA	European Food Safety Authority

List of Abbreviations and Elaborations

ELExotic layerESEgg surface swabFaFarmFAOFood and Agricultural OrganizationFeaFeatherFEMFixed-Effect ModelGiGizzardHHatcheryHBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenousI'HeterogeneityInIndesniaNDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratoryLabLiLiverLuLungsMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMacMixedMacChick meconiumMMMyanmarMoMouth	Abbreviation	Elaboration
ESEgg surface swabFaFarmFAOFood and Agricultural OrganizationFeaFeatherFEMFixed-Effect ModelGiGizzardHHatcheryHBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenousl²HeterogeneityInIndexneaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLiLiverLuLurgsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMoMouth	EL	Exotic layer
FaFarmFAOFood and Agricultural OrganizationFeaFeatherFEMFixed-Effect ModelGiGizzardHHatcheryHBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenousP ² HeterogeneityINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLiLive bird marketLiLiverLuLungsMMixeedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	ES	Egg surface swab
FAOFood and Agricultural OrganizationFeaFeatherFEMFixed-Effect ModelGiGizzardHHatcheryHBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenousP²HeterogeneityInNDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLiLiverLuLurgsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	Fa	Farm
FeaFeatherFEMFixed-Effect ModelGiGizzardHHatcheryHBHybrid broilerHHHouseholdHrHeartHSHealth status1IndigenousI²HeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLive bird marketLiLiverLuMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMatMyanmarMoMouth	FAO	Food and Agricultural Organization
FEMFixed-Effect ModelGiGizzardHHatcheryHBHybrid broilerHHHouscholdHrHeartHSHealth statusIIndigenousI²HeterogeneityInIntestineIND0IndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLive bird marketLiLiverLuMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	Fea	Feather
GiGizzardHHatcheryHBHybrid broilerHBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenous P^2 HeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMMMyanmarMoMouth	FEM	Fixed-Effect Model
HHatcheryHBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenousI²HeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLive bird marketLiLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	Gi	Gizzard
HBHybrid broilerHHHouseholdHrHeartHSHealth statusIIndigenous l^2 HeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLBMLive bird marketLiLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	Н	Hatchery
HHHouseholdHrHeartHSHealth statusIIndigenous l^2 HeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLBMLive bird marketLiLiverLuMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMGMethod of confirmationMacChick meconiumMMMyanmarMoMouth	HB	Hybrid broiler
HrHeartHSHealth statusIIndigenousI^2HeterogeneityInIntestineINDIndiaINDIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLBMLive bird marketLiLiverLuMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	HH	Household
HSHealth statusIIndigenousIIndigenousIPHeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLive bird marketLiLiverLuMixedMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	Hr	Heart
IIndigenousI²HeterogeneityInIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLiver bird marketLiLiverLuMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMMMyanmarMoMouth	HS	Health status
Image: Problem state in the	Ι	Indigenous
InIntestineINDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLive bird marketLiLiverLuMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMcMethod of confirmationMacMixedMacMatrix-assisted laser desorption/ionization-time of flightMoMyanmar	I^2	Heterogeneity
INDIndiaINDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLive bird marketLiLiverLuLungsMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMcMethod of confirmationMecChick meconiumMoMyanmar	In	Intestine
INDOIndonesiaKKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLive bird marketLiLiverLuLungsMMixedMALDI-TOFMethod of confirmationMecChick meconiumMMMyanmarMoMouth	IND	India
KKidneyLStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLive bird marketLiLiverLuLungsMMixedMALDI-TOFMethod of confirmationMcMethod of confirmationMecChick meconiumMMMyanmarMoMouth	INDO	Indonesia
LStudy levelLALao People's Democratic RepublicLaboratotyLabLBMLive bird marketLiLiverLuLungsMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	K	Kidney
LALao People's Democratic RepublicLaboratotyLabLBMLive bird marketLiLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	L	Study level
LaboratotyLabLBMLive bird marketLiLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	LA	Lao People's Democratic Republic
LBMLive bird marketLiLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	Laboratoty	Lab
LiLiverLuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	LBM	Live bird market
LuLungsMMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	Li	Liver
MMixedMALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	Lu	Lungs
MALDI-TOFMatrix-assisted laser desorption/ionization-time of flightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	М	Mixed
MALDI-TOFflightMCMethod of confirmationMecChick meconiumMMMyanmarMoMouth		Matrix-assisted laser desorption/ionization-time of
MCMethod of confirmationMecChick meconiumMMMyanmarMoMouth	MALDI-IOF	flight
MecChick meconiumMMMyanmarMoMouth	MC	Method of confirmation
MMMyanmarMoMouth	Mec	Chick meconium
Mo Mouth	ММ	Myanmar
	Мо	Mouth

Abbreviation	Elaboration
MP	Multiple province
MV	Maldives
MY	Malaysia
n	Number of studies / number of positive samples
N	Total number of samples/ No
NM	Not mentioned
NP	Nepal
NTS	Non-typhoidal Salmonella
0	Ovary
OFCD	Organization for Economic Co-operation and
OECD	Development
Ovi	Oviduct
р	Probability
РАК	Pakistan
PCR or P	Polymerase chain reaction
PFGE	Pulse field gel electrophoresis
РН	Philippines
РМ	Processed meat
Ро	Pooling
Pr	Probabilistic sampling
prev	Prevalence
DDISMA	Preferred Reporting Items for Systematic Reviews
r RISMA	and Meta-Analyses
PrP	Proportionate probabilistic
РТ	Production type
Pur	Purposive
Q	Quality of study
Re	Restaurant
REM	Random-Effect Model
RIR	Rhode Island Red
RM	Raw meat
L	I

Abbreviation	Elaboration
RTE	Ready to eat meat
S	Study site
s.e.	Standard error
SA	Sampling approach
Sam	Sample
SD	Study design
Se	Serotyping
SH	Slaughter house
SIN	Singapore
Sk	Skin
SL	Sri Lanka
SLR	Systematic Literature Review
Son	Sonali
SP	Study period
SP	Single province
Spl	Spleen
SPr	Simple probabilistic
SysPr	Systematic probabilistic
TH	Thailand
TL	Timor-Leste
USA	United States of America
V	Vietnam
WHO	World Health Organization
Y	Yes
Yo	Yolk sac

Abstract

This systematic literature review and meta-analysis took the very first attempt to assess the prevalence of Campylobacter and non-typhoidal Salmonella in chicken samples and chicken eggs in south and south-east Asia along with the associated risk factors. A computerized literature search was performed targeting publications from 2000 to 2020 on PubMed, ProQuest, Embase, Web of Science and Google Scholar. A total of 60 Campylobacter articles and 121 non-typhoidal Salmonella articles were selected for this meta-analysis after title, abstract and full-text screening. The overall estimated random effect pool prevalence of Campylobacter in chicken in south and south-east Asia at sample unit was 42.4% (95% Confidence Interval: 36.1% to 48.7%) and farm unit was 58.4% (95% CI: 42.4% to 74.4%). On the other hand, overall random-effect non-typhoidal Salmonella prevalence in chicken samples was 26.1% (95% CI: 22.5% to 29.8%) and egg samples was 9% (95% CI: 4.7% to 13.3%) in this region. Metaregression results suggested that both Campylobacter [Co-efficient: 23.5 (95% Confidence interval: 9.2 to 37.7); p=0.001] and non-typhoidal Salmonella [Coefficient: 22.5 (95% CI: 13.3 to 31.7); p=<0.001] were most prevalent among samples from Thailand. Samples collected from live bird markets showed the highest prevalence [Co-efficient: 17.6 (95% CI: 3.5 to 31.7); p=0.01] for Campylobacter while nontyphoidal Salmonella was most prevalent in retail outlets [Co-efficient: 28.1 (95% CI: 11.0 to 45.1]. Non-typhoidal Salmonella was detected more in carcass [Co-efficient: 38.4 (95% CI: 22.4 to 54.3), p<0.001] and raw meat [Co-efficient: 17.6 (95% CI: 6.5 to 29.0); p=0.002] samples. Egg shells [Co-efficient: 15 (95% CI: 2.2 to 27.7); p=0.02] significantly contained more non-typhoidal Salmonella than egg content. C. jejuni [79.9%; 95% CI: 78.2% to 81.4%] and C. coli [17.1%; 95% CI: 15.6% to 18.6%] were the predominant Campylobacter species. Salmonella enterica serovar Enteritidis (30.3%; 95% CI: 27.7% to 33.1%) was the most commonly identified in chicken samples and Salmonella enterica serovar Typhimurium (62.5%; 95% CI: 48.5% to 75.1%) was most common in egg samples. Installment of surveillance system, proper training of the workers of live bird markets and retail outlets to maintain hygiene and avoiding raw and undercooked meat and egg is recommended to prevent and control these pathogens.

Keywords: Campylobacter, Chicken, Non-typhoidal Salmonella, Prevalence, Risk factor.

Chapter-1: Introduction

South and southeast Asia is a region have undergone major changes in poultry production in the last decade and have become global leaders in poultry production, consumption, and exports. This fact is related to an increase in the demand for animal protein, linked to the development of these countries, as well as the increase in population and per capita income, and the position of broiler meat and egg as affordable protein sources (Soriano, 2022). Despite this growth, the sustainability of this industry is challenged by potential public health risks such as poultry borne campylobacteriosis and non-typhoidal salmonellosis in human.

Campylobacter and non-typhoidal *Salmonella* (NTS) are bacterial enteric pathogens associated with food animal reservoirs. They are transmitted to humans predominantly by contaminated food and water. Foodborne zoonoses, including those caused by *Campylobacter* and NTS, are recognized by the World Health Organization (WHO) as important causes of human illness and death worldwide (Havelaar et al., 2015). It is estimated that *Campylobacter* are responsible for > 95 million foodborne illnesses and > 21,000 deaths and NTS for > 78 million foodborne illnesses and > 59,000 deaths globally (Havelaar et al., 2015).

Based on the latest report of Centers for Disease Control and Prevention (CDC, 2023) 30 to 70% of the international travelers get diarrhea and majority of them get it from Asia. Both Campylobacter and NTS are two important pathogens to cause traveler's diarrhea (CDC, 2023). In Southeast Asia, the overall prevalence of *Campylobacter* infections in human is 7.8%. However, such kind of data could not be found for NTS infection in human (Wada and Abdul-Rahman, 2022).

Besides the health aspect, food poisonings also affect the economy due to the costs of hospitalization, work absence, financial losses associated with consumers' concerns of food quality, and the costs of legal proceedings (Zeng et al., 2016). The 2019 World Bank report on the economic burden of the foodborne diseases indicated that the total productivity loss associated with foodborne disease in low- and middle-income countries was estimated at US\$ 95.2 billion per year, and the annual cost of treating foodborne illnesses is estimated at US\$ 15 billion (WHO, 2022). However, there have

been not any evaluation of the status and economic burden of *Campylobacter* and NTS in human in south and southeast Asian countries (WHO, 2012).

These data indicate that *Campylobacter* and *NTS* infections in human are endemic in south and southeast Asian countries. Furthermore, the reported cases of *Campylobacter* and NTS infections are likely to represent only the tip of the iceberg owing to underreporting (Wagenaar et al., 2013).

It was determined that nearly 30% of all campylobacteriosis cases of infection were caused by the consumption of chicken meat, including 50–80% of isolated *Campylobacter spp.* strains of chicken origin (Josefsen et al., 2015; Hald et al., 2016;). The main source of pathogenic *Salmonella* causing food poisoning in humans is chicken meat and eggs (Saravanan et al., 2015; Hurtado et al., 2017). According to an old systematic review in Japan, 71% of retail chicken samples were positive for *Campylobacter* (Saito et al., 2005). The prevalence of NTS in raw chicken meat was 26.4% in China according to a recent systematic review and meta-analysis (Sun et al., 2021). But currently there is no systematic review and meta-analysis on the overall prevalence of *Campylobacter* and NTS in chicken from the countries of south and southeast Asia.

Chicken meat production is central to livelihoods in the south and southeast Asian countries, with meat from poultry being a key protein source in subsistence communities (OECD/FAO, 2016). In many low-resource settings, industrialization, urbanization, and the shift from planned to market economies are leading to rapid changes in the way that food is produced, distributed, sold, and consumed (Carron et al., 2018; Grace, 2017). Such market-driven changes within agricultural production towards wider distribution networks, centralized processing, larger-scale and more intensive systems, have been linked to the emergence of zoonotic diseases (Jones et al., 2013) and the potential impact on chicken originated food products within low- and middle-income countries is increasingly recognized (WHO, 2017).

Overall, campylobacteriosis and salmonellosis are still most important infectious diseases that are likely to challenge global health in the years to come. Data on the presence of *Campylobacter* and *NTS* in the chicken meat production pathway in South and South-east Asia are limited and are not currently available in aggregate form.

Therefore, this study aims to perform a systematic review on *Campylobacter* and NTS in chickens and chicken eggs to inform further studies, food safety policy and identify scientific data gaps through the following objectives:

- i) Assess the prevalence of *Campylobacter* and NTS in chickens and chicken eggs in south and south-east Asia
- ii) Describe factors associated with the presence of *Campylobacter* and NTS in chickens and chicken eggs in south and south-east Asia

1.1. Outcomes of the study:

- i. This systematic literature review and meta-analysis provides quality evidence on the prevalence of *Campylobacter* species and NTS serovars in chicken meat and egg.
- **ii.** The study identifies the associated factors with the presence of *Campylobacter* and NTS in chicken such as both the pathogens are significantly most prevalent in Thailand. Live bird market is a significant source of *Campylobacter* whereas retail meat outlet, carcass, raw meat and egg surface are significant sources of NTS.

Chapter-2: Review of Literature

The overall goal of this chapter was to review past relevant research findings related to the Master's project "**Prevalence of** *Campylobacter* and **Non-typhoidal** *Salmonella* **in Chicken and Chicken Products in South and Southeast Asia: A Systematic Review and Meta-analysis**" to identify the gaps and justify the present research. Published literatures were obtained by searching online sources like PubMed, Web of Science, Embase, ProQuest and Google Scholar. This chapter is arranged in a series of sections including a review of literatures on etiology, clinical signs of campylobacter and non-typhoidal *Salmonella* (NTS), risk factors for the transmission of Campylobacter and NTS in human and global burden of these two pathogens in human and chicken.

2.1. Campylobacteriosis and Salmonellosis

Campylobacteriosis and Salmonellosis are bacterial foodborne zoonoses caused by *Campylobacter* species (family: Campylobacteriaceae) such as *Campylobacter jejuni* subspecies *jejuni* (95% of cases of zoonoses) and *Campylobacter coli* (five percent of the zoonoses) and non-typhoidal *Salmonella* (family: Enterobacteriaceae) such as *Salmonella enterica* serovars specially *S*. Enteritidis and *S*. Typhimurium (Krutkiewicz, 2008; Fàbrega and Vila, 2013; Li et al., 2013 and Modi et al., 2015).

People with *Campylobacter* infection usually have diarrhea (often bloody), fever, and stomach cramps. Nausea and vomiting may accompany the diarrhea. These symptoms usually start 2 to 5 days after the person ingests *Campylobacter* and last about one week. Sometimes *Campylobacter* infections cause complications, such as irritable bowel syndrome, temporary paralysis, and arthritis (CDC, 2023).

Typical signs of infection with non-typhoid serovars of *Salmonella spp.* are stomach ache and diarrhea, but other possible symptoms include: vomiting, nausea, fever, shivers, muscular or articular pain, cramps and loss of appetite (Hald, 2013; Antillón et al., 2017; Hung et al., 2017).

Though both the infections are self-limiting and less severe, sometimes they can be fatal. In people with weakened immune systems, such as those with a blood disorder, with acute immune deficiency syndrome, or receiving chemotherapy, *Campylobacter*

occasionally spreads to the bloodstream and causes a life-threatening infection (CDC, 2023).

In case of NTS, fatalities are most often observed in children below the age of 4 years who are infected with serotypes Enteritidis or Typhimurium (De Jong et al., 2012; Evangelopoulou et al., 2015). Bacteremia develops in 5–10% of people infected with NTS and may lead to focal infections, such as meningitis, endocarditis, arthritis, and osteitis (Chen et al., 2013; Hald, 2013).

Non-typhoidal *Salmonella* and *Campylobacter* are the most frequently isolated foodborne pathogens, and are predominantly found in chicken and eggs (CDC, 2023). Campylobacteriosis as a clinical disease is not common in chickens. Some strains of *C*. *jejuni* have been reported to cause enteritis and death in newly hatched chicks (MSD veterinary manual, 2022).

Salmonella causes pullorum disease and fowl typhoid in chickens. Pullorum disease is caused by *Salmonella enterica* Pullorum and is characterized by very high mortality in young chickens. Affected birds huddle near the heat source, are anorectic, weak, depressed, and have white fecal material pasted to the vent area. In addition, the birds may have respiratory disease, blindness, or swollen joints. Whereas, the causal agent of fowl typhoid is *Salmonella enterica* Gallinarum. Clinical signs are similar to pullorum disease but there is a much greater tendency to spread among growing or mature flocks. Mortality in young birds is similar to that seen in *S. enterica* Pullorum infection but may be higher in older birds (MSD Veterinary Manual, 2022).

2.2. Chicken as a reservoir of Campylobacter and non-typhoidal Salmonella

Campylobacter spp. colonize in the mucosa of the caecum and cloaca crypts of infected chickens, but may also be present in the spleen, blood, and liver (Lin, 2009). In newborn chickens before 3rd week of life, no presence of *Campylobacter* is found, which may be associated with the presence of antibodies from the maternal organism, the addition of antibiotics in feed, and development of the intestine and its microbiota (Lin, 2009; Saint-Cyr et al., 2016). After that time, if a single bird in the flock contracts the infection, it will be transmitted to the rest within days (approximately 3 days) through pathogen-containing faces, or by rodents, water, insects, or farm workers (Lin, 2009; Whiley et al., 2013; Saint-Cyr et al., 2016).

The intestines of chickens are asymptomatically colonized by *Salmonella spp.* as a result of a horizontal or vertical transmission of bacteria at the stage of primary production (Dunkley et al., 2009; Antunes et al., 2016). The horizontal route of infection includes contaminated feed and water, as well as bedding, soil, air, and farm personnel (Singh et al., 2013; Nidaullah et al., 2017). The vertical route includes direct infection of offspring by its flock (Sivaramalingam et al., 2013; Nidaullah et al., 2017). *Salmonella spp.* may be present in as much as 65% of individuals in a flock. Besides, the unrestricted dissemination and colonization of intestines, *Salmonella spp.* may also be transferred to the liver, spleen, and ovaries (Dunkley et al., 2009) of bacterial colonization of the hen's genital system. Moreover, eggs may also be also infected through the environment, and pathogenic bacteria may be present not only on the surface of an egg shell, but also penetrate the inside (Whiley et al., 2015).

2.3: Risk factors for the transmission of *Campylobacter* and non-typhoidal *Salmonella* in human

Campylobacter and non-typhoidal *Salmonella* are primarily transmitted through the consumption of contaminated chicken meat, including raw or undercooked chicken (WHO, 2018; WHO, 2020). The organisms can also be transmitted through cross-contamination in the kitchen, from cutting boards and utensils that have come into contact with contaminated chicken meat (WHO, 2018; WHO, 2020). Additionally, there are reports of asymptomatic shedding of *Salmonella* in the gut of healthy chicken, which could be a source of human infection (Monack, 2012). Asymptomatic shedding of *Salmonella* in the gut of hens can also be a source of egg contamination (Monack, 2012). This could be a potential source of human infection if eggs are not properly cooked. The zoonotic transmission of *Campylobacter and Salmonella enterica* can occur through direct contact with chickens and environmental exposure (WHO, 2018; WHO, 2020).

2.4. Global burden of Campylobacter and Non-typhoidal Salmonella in human

The incidence of infections caused by *Campylobacter* and NTS in human has been constantly growing. These two pathogens are one of the four global key causes of diarrhoea (WHO, 2018) and the most common foodborne bacterial zoonosis in the world (Galate and Bangde, 2015; Kashoma et al., 2015).

It is estimated that *Campylobacter* causes 500 million infections in the world every year (Kashoma et al., 2015). On the other hand, annual number of cases of non-typhoidal salmonellosis in the world, ranging between 200 million to over 1 billion (Whiley et al., 2015; Bierschenk et al., 2017).

In the European Union, the number of cases of Campylobacteriosis rose to 246,307 million in 2017 (EFSA, 2018). The number of confirmed NTS cases was 94,530 in 2016 (EFSA, 2017). It is estimated that in the United States of America (USA), Campylobacteriosis affects a million people a year, and in Canada, there are over 200 thousand cases registered each year (Ravel et al., 2016; Rosenberg Goldstein et al., 2016). Over a million cases of non-typhoidal salmonellosis in a year are estimated in the USA. Nearly 20,000 require hospitalization and there are approximately 400 cases of death resulting from infection with NTS (Jiang et al., 2015; Anderson et al., 2016). However, death rates are not available for human campylobacteriosis.

In southeast Asia, the overall prevalence of *Campylobacter* infections in human is 7.8%. (Wada and Abdul-Rahman, 2022). In addition, based on the 2007-2011 reports of the International Society of Travel Medicine and the Centers for Disease Control and Prevention (CDC), the majority of diseases (32.6%) were reported from international travelers returning from Asia, with diarrhea being the most common infection (34%) where *Campylobacter* and NTS were the frequent causes (Leder et al., 2013).

2.5. Global burden of Campylobacter and Non-typhoidal Salmonella in chickens

The prevalence of *Campylobacter* in chicken was found 40.2% in gut samples and 21.3% in meat and organs in a systematic review conducted in Africa where *C. jejuni* and *C. coli* were more detected among the species (Thomas et al., 2020). Non-typhoidal *salmonella* was present at 13.4% gut samples and 13.2% meat and organ samples where *S.* Typhimurium and *S.* Enteritidis were most dominant (Thomas et al., 2020).

Another systematic review conducted in middle east reported that 39% of the chicken and chicken products were contaminated with *Campylobacter* (*C. jejuni*: 25% and *C. coli*:13%) and 31% with NTS (*S.* Typhimurium: 7% and *S.* Enteritidis: 9%) (Abukhattab et al., 2022).

Presence of campylobacter in chickens is also common in south and south-east Asian countries. Though no systematic reviews were found, several studies reported 9% to 80% prevalence in raw meat in this region where *C. jejuni* and *C. coli* were the most isolated species (Premarathne et al., 2017). The situation is similar for NTS, with moderate to high rates of prevalence (15% to 28%) reported in raw chicken meat from south and south-east Asian countries (Nguyen et al., 2012; Ta et al., 2014; Khan et al., 2019).

Therefore, *Campylobacter* and NTS are recognized as the main hazards that lead to foodborne infections around the globe and chicken is the main source of these pathogens. So, lots of surveillance, research findings and systematic reviews are available for developed countries in human and chicken (Silva et al., 2011; Al-Sakkaf, 2012). Though there is one meta-analysis on human burden of Campylobacteriosis in southeast Asia (Wada and Abdul-Rahman, 2022) and some surveillances available for developing countries in the south and south-east Asia, no systematic review and meta-analysis is available till to date for the prevalence of *Campylobacter* and NTS along with the associated factors in chicken.

Aggregation of data regarding these two important pathogens from chicken origin in this area through a systematic literature review and meta-analysis is necessary to plan prevention and control measures as well as identify future research priorities.

Chapter-3: Methodology

We conducted a Systematic Literature Review (SLR) and meta-analysis to assess the prevalence of *Campylobacter* and non-typhoidal *Salmonella* (NTS) in chickens and chicken eggs in south and southeast Asia along with the associated risk factors. This SLR was adhered to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2009).

3.1. Search strategy

A computerized literature search was performed from 30 June to 7 July 2020 targeting publications from 2000-2020 listed on PubMed, ProQuest, Embase, Web of Science and Google Scholar. The search used the Boolean search criteria "A AND C AND D" and "B AND C AND D", as follows:

- A. Campylobacter*
- B. Salmonel*
- C. (Chicken) OR (chickens) OR (broiler) OR (layer) OR (poultry) OR (hen) OR (cock) OR (cocks) OR (cockerel) OR (laying hen*) OR (chick) OR (chicks) OR (Egg*)
- D. (South Asia*) OR (Southeast Asia*) OR (Afghanistan*) OR (India*) OR (Pakistan*) OR (Bangladesh*) OR (Sri Lanka*) OR (Nepal*) OR (Bhutan*) OR (Maldives*) OR (Indonesia*) OR (Malaysia*) OR (Singapore*) OR (Philippines*) OR (East Timor*) OR (Brunei*) OR (Cambodia*) OR (Laos*) OR (Lao) OR (Myanmar) OR (Burma*) OR (Thailand*) OR (Vietnam*) OR (Viet Nam)

The "Title", "Keywords," and "Abstract" fields were selected for EMBASE, "Title" and "Abstract" for PubMed, "Abstract" for ProQuest, and "Topic" for Web of Science. Mendeley was used to manage citations and remove duplicates. Articles only published in English were allowed in the literature search and the timeline was restricted to January 2000 to May 2020.

For grey literature, reports and unpublished data, hand searching was performed from Google organization websites. A series of some simple search strings (e.g., *Campylobacter* in poultry; Salmonella in poultry) was used to search the first 100 hits of each result in Google Scholar.

3.2. Screening of references

A number of inclusion and exclusion criteria were set to screen the relevant papers.

The inclusion criteria were, a) Articles published between January 2000- May 2020; b) Published research articles (full length or short communication), grey literature, reports and unpublished data; c) Observational studies that should include at least the total number of chickens/chicken meat/eggs/ processed products being tested and the number of positive samples; e) Articles had to describe the identification, or prevalence of *Campylobacter* spp, in chickens organs and/or eggs and/or processed products in south and south-east Asia; f) The diagnostic method for *Campylobacter* spp and *Salmonella spp* had to be at least standard bacteriological culture (ISO 10272-1:2017, ISO 6579-1:2017(en)) and g) Articles had to be published in English .

The exclusion criteria were, a) Articles published before January 2000 and after May 2020; b) Review articles and book chapters; c) Articles that did not describe the prevalence of *Campylobacter* and Non-typhoidal *Salmonella* in chickens/chicken meat/eggs/ processed products d) Articles that had some differences between the results written in the text and the tables or graphs e) Studies that were conducted outside south and south-east Asia; f) Diagnostic method based on only post-mortem or serological test; and g) Articles published in other than English language.

Screening of titles and abstracts and full texts was conducted independently by two reviewers and checked by a third reviewer to remove studies unlikely to contain relevant information. Where exclusion could not be justified by one reviewer based solely on screening of a record's title and abstract, the full text was retrieved to allow both reviewers to reach a consensus.

A structured word form was used to extract data from each selected article. Data were extracted by a first reviewer and then checked for missing data and inaccuracies by a second reviewer. Finally, the extracted data were transferred to a structured Microsoft office Excel-2010 spreadsheet for analysis.

3.3. Statistical analysis

We used two sets of data (Campylobacter and non-typhoidal Salmonella) for the analysis. Data cleaning, sorting and coding and recoding were done in Microsoft office excel-2010 before exporting to STATA-18 ((Stata Corp, 4905, Lakeway Drive, College Station, Texas 77845, USA) for statistical analysis. At first, we calculated the prevalence for each study by dividing the positive samples with the total number of samples. Then 95% confidence interval (95% CI) was calculated using the following formula: prev +/- $1.96*(\sqrt{\text{prev}(1-\text{prev})/N})$ (Here, prev= Prevalence; N= Total number of sample). We performed Random-Effect Model (REM) to estimate the overall prevalence with 95% CI and we examined heterogeneity between studies using the I^2 statistic. We used a REM for meta-analysis as this includes consideration of heterogeneity in the effect estimate (Ryan, 2016). A Fixed-Effect Model (FEM) assumes that there is no statistical heterogeneity between studies (i.e., that the estimated effects from each study would all be the same if the studies were large enough); while the REM assumes that the effects estimated within each study are not identical but do follow a specific distribution (Ryan, 2016). We conducted further subgroup analysis and meta-regression to examine the more influential group in the prevalence based on country, sample type and source in the studies. Pooled estimates were not computed for single study subgroups. Meta-regression was only considered for the subgroups having at least ten studies. Funnel-plot analysis was performed in the study to identify the qualitative bias in the publications. If the funnel plots were visually not symmetrical and some of the points fall outside of the funnel, indicated publication bias. To evaluate the small-study effects, we performed a regression-based Egger's test. If the p value was less than 0.05 indicated presence of small study effect.

3.4. Study quality

Studies were given an overall grade one or two (Table 3.1). Quality 1 studies had well described study design and methods. Their sampling approaches and study level were highly ranked, e.g., probabilistic sampling approaches at the multiple provincial or at single provincial level. The diagnostic methods were also highly ranked; culture, followed by biochemical tests and PCR (Polymerase chain reaction) or only PCR. Quality 2 studies contained some weaknesses in their sampling approach (non-probabilistic sampling) and/or diagnostic methods (only culture and biochemical methods).

Table 3.1. Grading of study quality based on study methodology criteria (Dean et al.,2012)

Methodological criteria	Quality 1	Quality 2
Sampling approach		
Probabilistic		
Non-probabilistic		
Not mentioned		\checkmark
Study level		
Multiple province		
Single province		
District		
Not mentioned		\checkmark
Diagnostic methods		
Culture followed by biochemical test and PCR		
Culture followed by biochemical tests		
PCR		

Chapter-4: Results

4.1. Selection of Campylobacter studies

A flow diagram of the review is shown in Figure 4.1. A total of 394 unique articles were screened for relevance of which 58 relevant articles were selected. Additional 15 references were retrieved from the full-text screening among which, two references were relevant. So, 60 articles were finally selected for this review (Figure 4.1).

Figure 4.1. Flowchart of selected Campylobacter studies

4.2. Selection of non-typhoidal Salmonella studies

A total of 1765 unique references were screened for relevance of which 115 relevant references were identified. Additional nine articles were retrieved from the full-text screening among which, six articles were relevant. A total of 121 articles were finalized for the review (Figure 4.2).

Figure 4.2. Flowchart of selected non-typhoidal Salmonella studies

4.3. Characteristics of the selected Campylobacter studies

Articles that reported multiple studies conducted in different sample types or populations (e.g., Farm, live bird market, slaughterhouse etc. and cloacal swab, raw meat) were considered as separate studies. A summary table for all the selected *Campylobacter* studies has been added in the Appendix A.

All the studies (100%) were cross-sectional studies. The studies were conducted between 2002 and 2019 (Appendix A). A total of 60 articles incorporated 95 studies which included 84 sample units, 12 farm units, two live bird market units, one retail outlet unit, two restaurant units, and one super shop unit prevalence studies. Most of the studies were from India (n=28) followed by Thailand (n=20), Bangladesh (n=9), Malaysia (n=9) and Pakistan (n=9). Eight studies were conducted in Philippines, five in Sri Lanka, four in Vietnam, two in Cambodia and one in Singapore (Figure 4.1).

Figure 4.3. Map showing number of *Campylobacter* studies in chicken and chicken egg across south and south-east Asian countries between 2002 and 2019 (AF= Afghanistan, BD= Bangladesh, BH= Bhutan, CAM= Cambodia, IND= India, INDO= Indonesia, LA= Lao, MM= Myanmar, MV= Maldives, MY=Malaysia,

NP=Nepal, PH= Philippines, PAK= Pakistan, SIN= Singapore, SL= Sri Lanka, TH= Thailand, TL= Timor-Leste, V= Vietnam)

Among the sample type, raw meat (n=31), cloacal swab (n=16), caecal content (n=14) and skin (n=11) were the most common. Other samples were intestine (n=4), cooked meat (n=4), carcass (n=4), liver (n=2), chick meconium (n=1), egg shell swab (n=1), feather (n=1), gizzard content (n=1) and processed meat (n=1). Four studies collected different type of samples but reported the number of tested and positive samples collectively. The sample types for these 4 studies were considered as mixed type (Appendix A).

Study sites also varied highly. Twenty-two studies collected sample from live bird markets (LBM), 18 from slaughterhouses, 14 from farms, 9 from retail outlets, 4 from restaurants, 4 from super shops, 2 from hatcheries and 2 from households. There were 13 studies which collected samples from different sites but reported the number of tested and positive samples collectively. These study sites were considered as mixed sites. Seven studies did not mention the study sites (Appendix A).

Exotic broiler was the most common (n=68, 71.6%) production type where many studies did not report any production type (n=21, 22.1%). Three studies were conducted in indigenous chicken, one in breeder house, one in hatchery and one in cockerels (Appendix A).

A total of 25 studies followed a probabilistic sampling approach, whereas 10 studies followed convenient sampling. Rest of the 60 studies did not mention their sampling approaches (Appendix A).

Where most of the studies were conducted at a single province (n=41, 43.2%), 26.3% (n=25) were conducted at district level and 25.3% (n=24) were at multiple provinces. The study location or level was not mentioned in 5.6% (n=5) of the studies (Appendix A).

For confirmation of the positive samples, 49 studies conducted standard culture and biochemical method. Forty-five studies conducted PCR along with standard culture and biochemical method. One study conducted only PCR for confirmation of *Campylobacter* positive samples (Appendix A).

Ten studies were graded as Quality1 and 85 studies as Quality2 (Appendix A).

4.4. Characteristics of the selected non-Typhoidal Salmonella studies

A summary table for all the selected Non-Typhoidal Salmonella (NTS) studies has been added in the Appendix B.

The studies were all cross-sectional and conducted between 1997 and 2018 (Appendix B). A total of 220 articles incorporated 216 sample units, three farm units, two live bird market units and super shop unit prevalence studies. Among the sample unit studies, 179 were chicken samples (e.g., cloacal sample, raw meat) and 37 studies were egg sample studies (e.g., egg shell, egg content, boiled egg) (Appendix B).

The highest number of studies were conducted in India (n=85), Thailand (n=42), Pakistan (n=28) and Vietnam (n=15). Thirteen studies were conducted in Malaysia and 12 in Bangladesh. Countries that conducted a smaller number of studies were Sri Lanka (n=8), Cambodia (n=5), Nepal (n=4), Singapore (n=3), Indonesia (n=2), Bhutan (n=1), Myanmar (n=1) and Philippines (n=1) (Figure 4.2).

Figure 4.4. Map showing number of non-typhoidal *Salmonella* studies in chicken and chicken egg across south and southeast Asian countries between 1997 and 2018

(AF= Afghanistan, BD= Bangladesh, BH= Bhutan, CAM= Cambodia, IND= India, INDO= Indonesia, LA= Lao, MM= Myanmar, MV= Maldives, MY=Malaysia, NP=Nepal, PH= Philippines, PAK= Pakistan, SIN= Singapore, SL= Sri Lanka, TH= Thailand, TL= Timor-Leste, V= Vietnam)

Raw meat (n=76), cloacal swab (n=23) and carcass (n=14) were more frequently sampled among the studies. Among the 37 studies sampled egg, 12 sampled egg shell swab and 14 egg content and one boiled egg. The rest of the 10 studies reported the sample type as egg and did not specify egg shell or content. Intestine, liver and cooked meat were sampled in eight studies each; caecal content and processed meat were sampled in five studies each. The number of studies for other samples were- ovary (n=4), skin (n=3), spleen (n=3), kidney (n=3), heart (n=2), ready to eat meat (n=2), mouth (n=1), dead embryo (n=1), oviduct (n=1), crop (n=1), lung (n=1) and yolk sac (n=1). Twelve studies collected different type of samples but reported the number of tested and positive samples collectively. The sample types for these 12 studies were considered as mixed type. One study did not mention the sample type (Appendix B).

Among the study sites, retail outlet (n=76), farm (n=47), live bird market (n=25), slaughterhouse (n=21), restaurants (n=14) and super shop (n=11) had the highest number of studies. Household (n=3), laboratory (n=2) and hatchery (n=1) were the sites with a smaller number of studies. Fourteen studies collected samples from different sites but reported the number of tested and positive samples collectively. These study sites were considered as mixed sites. The study sites were not mentioned in six studies (Appendix B).

The production type of the study chickens was not mentioned in most of the studies (n=128). The studies that mentioned production type were- exotic broiler (n=30), exotic layer (n=20), breeder (n=2), hybrid broiler (n=1), Rhode Island Red (n=1) and Sonali (Cross between Rhode Island Red male and Fayoumi female) (n=1). Production type was not applicable for the egg sample (n=37) studies (Appendix B).

The health status of the sampled chickens was not mentioned in 150 studies. In 17 studies, the chickens were dead, clinically healthy in 11 studies and sick in 4 studies. One study sampled from both sick and dead chickens. Health status was not applicable for the egg samples (Appendix B).

Majority of the studies were conducted in district level (n=83). Sixty-seven studies were conducted in multiple provinces and 58 were conducted in a single province. Twelve studies did not mention the study area (Appendix B).

Sampling approach was not specified in 137 studies. Forty-three studies mentioned to follow probabilistic sampling without specifying the category. Simple probabilistic sampling approach was applied in 15 studies, proportionate probabilistic in two studies and systematic probabilistic in two studies as well. Convenient sampling method was followed in 18 studies and purposive sampling in three studies (Appendix B).

For detection of NTS positive samples, 123 studies conducted standard culture and biochemical method. Ninety-six studies conducted PCR along with standard culture and biochemical method. However, 70 studies did serotyping and/or pulse field gel electrophoresis and/or matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and/or Agarose gel diffusion to identify the serovars (Appendix B).

Seven studies were graded as Quality1 and 213 studies as Quality2 (Appendix B).

4.5. Prevalence of *Campylobacter* in chicken samples and farm in South and Southeast Asia

The extracted dataset from the selected *Campylobacter* studies contained a good number of sample unit (n=85) and farm unit (n=12) studies while only one or two studies for the other units. So, the pooled estimates were computed for sample and farm unit studies.

The overall estimated random effect pool prevalence of *Campylobacter* in chicken in south and south-east Asia at sample unit was 42.4% (95% Confidence Interval (CI): 36.1% to 48.7%) and farm unit was 58.4% (95% CI: 42.4% to 74.4%).

The forest plots for different subgroups across the studies have been added in the appendices.

Philippines (75.5%; 95% CI: 61.8% to 89.2%), Cambodia (68.4%; 95% CI: 44.1% to 92.8%) and Thailand (52.1%; 95% CI: 42.0% to 62.1%) had the higher pooled prevalence in the sample unit data. Bangladesh had 39.5%; (95% CI: 19.0% to 59.9%) prevalence, India 28.6% (95% CI: 19.6% to 37.7%) and Vietnam 27.3% (95% CI: 18.1% to 36.5%) (Appendix C).

The farm unit pooled prevalence of *Campylobacter* was higher in Thailand (54.9%; 95% CI: 19.2% to 90.5%). Sri Lanka and Bangladesh had 52.8% (95% CI: 32.1% to 72.4%)) and 40.5% (95% CI: 30% to 51%) prevalence respectively (Appendix D).

The pooled estimates of *Campylobacter* in sample unit studies were higher in mixed type samples (79.1%; 95% CI: 57.8 to 100.5%), liver (63.9%; 95% CI: -2.1% to 129.9%) and skin (53.7%; 95% CI: 31.1% to 76.4%). Whereas, lower pooled prevalence was observed in cooked meat (20%; 95% CI: -25% to 42.4%) (Appendix E). Farm unit prevalence was 68.5% (95% CI: 38.0% to 99.0%) in cloacal swab which was higher compared to caecal content (58.1%; 95% CI: 22.4% to 93.7%) and skin (41.4%; 95% CI: 25.5% to 57.2%) (Appendix F).

The higher level of sample unit prevalence was observed in supershop (57.7%; 95% CI: 37.1% to 78.3%), LBM (56.9%; 95% CI: 46.3% to 63.5%) and farm (45.6%; 35.1% to 56.2%) (Appendix G). The prevalence in farm unit data was higher in samples collected from farm (72.3%; 95% CI: 50.0% to 94.6%) compared to slaughterhouse (38.4%; 95% CI: 15.1% to 61.7%) (Appendix H).

Sample unit prevalence in clinically healthy chickens was 40.9% (95% CI: 33.8% to 48.0%) and 47.4% in chickens where health status was not mentioned (95% CI: 38.5% to 56.3%) (Appendix I). Farm unit prevalence was higher in healthy chickens 72.3%; 95% CI: 49.9% to 94.6%) compared to the chickens with unreported health status (45.3%; CI: 26.8% to 63.8%) (Appendix J).

46.5% (95% CI: 40.1% to 52.9%) prevalence was estimated in exotic broiler samples (Appendix K). On the other hand, 59.4% exotic broiler farms were *Campylobacter* positive (95% CI: 42.4% to 76.5%) (Appendix L).

Significant heterogeneity was present across the studies of each subgroup ($I^2>80\%$, $p\leq0.001$).

Campylobacter jejuni (79.9%; 95% CI: 78.2% to 81.4%) and *Campylobacter coli* (17.1%; 95% CI: 15.6% to 18.6%) were the more prevalent species among the tested positive samples (Figure 4.3).

Figure 4.5. Breakdown of Campylobacter species in the tested positive samples

4.6. Prevalence of non-typhoidal *Salmonella* in chicken samples and egg samples in South and Southeast Asia

The extracted dataset from the selected NTS studies contained a good number of sample unit (n=216) studies among which, 179 studies contained chicken samples and 37 studies contained egg samples. Other units had only two or three studies. So, pooled estimates were computed separately for chicken sample and egg sample studies.

The overall estimated random effect pool prevalence of *NTS* in chicken in south and south-east Asia in chicken samples was 26.1% (95% Confidence Interval (CI): 22.5% to 29.8%) and egg samples was 9% (95% CI: 4.7% to 13.3%).

Bangladesh (40.4%; 95% CI: 19% to 61.9%) followed by Nepal (35.4%; 95% CI: 28.9% to 46.8%) and Sri Lanka (33.6%; 95% CI: 12.2% to 55%) had higher prevalence of NTS in chicken samples. Singapore (13%; 95% CI: 4.1% to 21.9%) and Pakistan (11.1%; 95% CI: 5.3% to 16.9%) had lower prevalence. India had 16.2% (95% CI: 11.7% to 20.7%) prevalence while Vietnam had 32.7% (95% CI: 22.5% to 29.8%) prevalence (Appendix M).

For the egg samples, Bangladesh (28.9%; 95% CI: -7.6% to 65.4%) and Sri Lanka (27.8%; 95% CI: -5.6% to 6.3%) showed higher pooled prevalence. On the contrary, Malaysia (0.8%; 95% CI: -1.7% to 3.3%) and India (2%; 95% CI: 1% to 3.1%) showed the lowest prevalence (Appendix N).

Among the chicken samples, the higher estimated pooled prevalence of NTS was in carcass (54.6%; 95% CI: 39.5% to 69.7%) and raw meat (34%; 95% CI: 28.3% to 39.8% and lower in cooked meat (10%; 95% CI: 1.1% to 18.6%) (Appendix O). The sample unit prevalence of NTS in egg shell was 22.3% (7.1 o 37.7%) and 1.4% (0.41% to 2.41%) in egg content (Appendix P).

Prevalence among different study sites also varied highly. Live bird market (40.3%; 95% CI: 30.2% to 50.5%), slaughterhouse (29.3%; 95% CI: 19.1% to 39.5%) and retail outlet (26.6%; 95% CI: 19.9% to 33.4%) had higher pooled prevalence. The lower prevalence sites were super shop (20.3%; 95% CI: 8.1% to 32.5%), farm (18.3%; 95% CI: 11.7% to 24.8%) and restaurant (11.3%; 95% CI: 4% to 18.6%) (Appendix Q). Egg samples had higher pooled prevalence in retail outlet (12.2%; 95% CI: 3.8 to 20.6) and 0% at farm (Appendix R).

Chicken samples from sick birds (30.5%; 95% CI: -8.7% to 69.7%) had higher prevalence than dead (21.4%; 95% CI: 10.5% to 32.3%) and clinically healthy birds (18.6%; 95% CI: 8.6% to 28.6%) (Appendix S).

Chicken samples from exotic broiler (25.5%; 95% CI: 17.8% to 33.2%) had higher NTS pooled prevalence than exotic layer (15.8%; 95% CI: 6.5% to 25.1%) (Appendix T).

All the subgroups had significant heterogeneity across the studies ($I^2 > 80\%$, p=<0.001).

A total of 54 NTS serovars were reported in chicken samples. *Salmonella* Enteritidis (30.3%; 95% CI: 27.7% to 33.1%), *S*. Typhimurium (28.2%; 95% CI: 25.6% to 30.9%) and *S*. Gallinarum (4.4%; 95% CI: 3.3% to 5.7%) were the most frequent serovars isolated from the chicken samples (Figure 4.3.2.1). On the other hand, 9 serovars were identified in the egg samples among which, *S*. Typhimurium (62.5%; 95% CI: 48.5% to 75.1%), *S*. Enteritidis (8.9%; 95% CI: 3% to 19.6%), *S*. Emek (7.1%; 95% CI: 2% to 17.3%) and *S*. Heidelberg (7.1%; 95% CI: 2% to 17.3%) were the most prevalent (Figure 4.4).

Figure 4.6. Breakdown of non-typhoidal *Salmonella* serovars in the tested positive chicken samples

Figure 4.7. Breakdown of non-typhoidal *Salmonella* serovars in the tested positive egg samples

4.7. Meta-regression results

A meta-regression analysis was conducted to evaluate the effect of different predictors on the subgroup outcomes, as the large heterogeneity observed in the subgroup analysis supports the possibility of study factors impacting this variance. Mixed type sample, mixed type study site and not mentioned subgroups were not included in the metaregression to avoid misinterpretation of results.

4.7.1. Meta-regression results for Campylobacter studies

Total three subgroups of outcomes (each containing at least ten studies) were amenable to meta-regression analysis from sample unit data: country, study site and sample type. The heterogeneity in the sample unit prevalence of *Campylobacter* was significantly associated with country and study site. The prevalence was significantly higher in Thailand (Co-efficient: 23.5 (95% CI: 9.2 to 37.7); p=0.001) compared to India (reference group) and LBM (Co-efficient: 17.6 (95% CI: 3.5 to 31.7); p=0.01) compared to slaughterhouse (reference group) (Table 4.1).

Subgroup /	Co-efficient (95% CI)	р	I^2	Adj. R ²
predictors				
Country (n=44)				
India	Baseline	-		
Thailand	23.5 (9.2 to 37.7)	0.001	98.9%	18.6%
Study site (n=45)				
Slaughterhouse	Baseline	-		
Farm	6.3 (-9.9 to 22.5)	0.45		
Live bird market	17.6 (3.5 to 31.7)	0.01	97.2%	9.3%
Sample type (n=56)				
Raw meat	Baseline	-		
Cloacal swab	5.9 (-10.2 to 22.0)	0.47	98.6%	0.0%
Caecal content	7.2 (-8.0 to 22.5)	0.35		

 Table 4.1. Univariable meta-regression analyses of selected outcome subgroups for

 Campylobacter studies

p: Probability, CI: Confidence interval, I^2 = Heterogeneity, Adj= Adjusted, n= Number of studies

4.7.2. Meta-regression results for non-typhoidal Salmonella studies

For the sample unit NTS studies, six subgroups of outcomes (each containing at least ten studies) were included in meta-regression analysis: country, study site, sample type, health status, production type and egg samples. The prevalence of NTS was significantly higher in Vietnam (Co-efficient: 16.3 (95% CI: 3.0 to 29.6), p=0.02) and Thailand (Co-efficient: 22.5 (95% CI: 13.3 to 31.7); p=<0.001) over India (Baseline). Among the study sites, retail outlet (Co-efficient: 28.1 (95% CI: 11.0 to 45.1); p=0.001) had significantly higher prevalence over restaurant (Baseline). Raw meat (Co-efficient: 17.6 (95% CI: 6.5 to 29.0); p=0.002) and carcass (Co-efficient: 38.4 (95% CI: 22.4 to 54.3), P<0.001) sample types had higher prevalence than cloacal swabs (Baseline). Egg shell (Co-efficient: 15 (95% CI: 2.2 to 27.7); p=0.02) samples had significantly higher prevalence than egg content (Baseline) (Table 4.2).

Table 4.2. Univariable meta-regression analyses of selected outcome subgroups for non-typhoidal *Salmonella* studies

Subgroup / predictors	Co-efficient (95% CI)	р	I ²	Adj. R ²
Country (n=165)				
India	Baseline			
Pakistan	5.5 (-4.8 to15.8)	0.29	100%	12.2%
Malaysia	14.5 (-0.4 to 29.3)	0.06		
Bangladesh	12.8 (-2.1 to 27.7)	0.09		
Vietnam	16.3 (3.0 to 29.6)	0.02		
Thailand	22.5 (13.3 to 31.7)	< 0.001		
Study site (n=158)				
Restaurant	Baseline			
Farm	6.3 (-9.6 to 22.1)	0.44	100%	16.7%
Supershop	8.8 (-11.5 to 29.2)	0.39		
Live bird market	14.3 (-0.9 to 29.5)	0.07		
Slaughterhouse	17.1 (-0.1 to 34.2)	0.05		
Retail outlet	28.1 (11.0 to 45.1)	0.001		
Sample type (n=111)				
Cloacal swab	Baseline			
Raw meat	17.6 (6.5 to 29.0)	0.002	100%	16.6%
Carcass	38.4 (22.4 to 54.3)	< 0.001		
Production type (n=49)				
Exotic broiler	Baseline			
Exotic layer	-10.5 (-22.4 to 1.4)	0.08	100%	5.3%
Health status (n=31)				
Healthy	Baseline			
Sick and dead	3.6 (-12.8 to 19.9)	0.67	100%	0.0%
Egg samples (n=26)				
Egg content	Baseline			
Egg shell	15 (2.2 to 27.7)	0.02	100%	14.1%

p: Probability, CI: Confidence interval, I^2 = Heterogeneity, Adj= Adjusted, n= Number of studies

4.8. Publication bias

Publication bias was assessed separately for the study units included in the metaanalysis through funnel plots and bias egger test.

4.8.1. Publication bias in Campylobacter studies

We found a qualitatively asymmetrical association for prevalence of *Campylobacter* in the funnel-plot analysis (Figure 4.6 and Figure 4.7). A further regression -based egger's test showed that there was small study effect on the sample unit prevalence of *Campylobacter* (p=0.0003). But there was no small study effect on the prevalence of *Campylobacter* in farm unit studies (p=0.6).

Figure 4.8. Funnel plot for examination of publication bias in sample unit data for *Campylobacter* (%= prevalence percent, s.e.= standard error)

Figure 4.9. Funnel plot for examination of publication bias in farm unit data for *Campylobacter* (%= prevalence percent, s.e.= standard error)

4.8.2. Publication bias in non-typhoidal Salmonella studies

Both the funnel plots for NTS studies (chicken samples and egg samples) showed qualitatively asymmetrical association (Figure 4.8 and Figure 4.9). The regression - based egger's test indicated that there was small study effect on both chicken sample and egg sample studies ($p \le 0.001$).

Figure 4.10: Funnel plot for examination of publication bias in sample unit data for non-typhoidal Salmonella (studies with chicken samples)

%= prevalence percent, s.e.= standard error

Figure 4.11: Funnel plot for examination of publication bias in sample unit data for non-typhoidal *Salmonella* (studies with egg samples)

%= prevalence percent, s.e.= standard error

Chapter-5: Discussion

To the best of our knowledge, this is the first meta-analysis on prevalence of *Campylobacter* and non-typhoidal *Salmonella* (NTS) in chicken in south and south-east Asian countries based on the literature published between 2000 to 2020.

Our systematic review has demonstrated widespread prevalence of *Campylobacter* species and non-typhoidal *Salmonella* (NTS) serovars in chicken species across the study area. Both *Campylobacter* and NTS were significantly most prevalent in Thailand and least prevalent in India in various chicken samples. Vietnam also had significantly higher NTS prevalence in chicken samples compared to India but less than Thailand. Though any direct evidence could not be found, structural and operational variation in the poultry value chain between these countries could have contributed to this difference. However, presence of both the pathogens in chicken even at a lower percentage is a serious public health concern as they are sporadic in nature, low infective dose required for human illness and multiple ways of cross-contamination (Widdowson et al., 2005; Felde et al., 2014; Myintzawet al., 2023).

Among the study sites, *Campylobacter* had significantly higher prevalence in live bird market than slaughterhouse. Transportation from farms to live bird market has been identified as a critical harbor for the transmission and colonization of *Campylobacter* in live birds. This is due to the reuse of contaminated crates for shipping, animal hoarding, and induced-stress during the transportation of live birds from different flocks and/or farms to live bird markets as well as the unhygienic environment of the live bird market (Rabbi et al., 2021; Slader et al., 2002). Similar trend was reported for avian influenza (AI) in poultry where AI prevalence is higher than farm in Bangladesh (Kim et al., 2018). Non-typhoidal *Salmonella* were significantly more prevalent in retail outlets than restaurants. Evisceration process and cross contamination between carcasses prior shipping to retail outlets as well as unhygienic condition at retail outlets could attribute to this higher prevalence (Carrasco et al., 2012; Nair and Johny, 2019).

No significant difference was observed in *Campylobacter* prevalence among different type of samples. While NTS was significantly more likely to be isolated or detected from carcass rinse and raw meat than cloacal swab. Environmental contamination of

carcass and meat could increase the detection rate of *Salmonella* compared to the cloacal samples (Carrasco et al., 2012; Nair and Johny, 2019, Rabbi et al., 2021).

Egg content contained significantly less NTS compared to egg shell. For instance, *Salmonella* being a mesophilic aerobic bacteria can survive on eggshells regardless of storage conditions up to 21 days. Further, the survival rate of *S. enterica* on egg shells can be increased with the presence of chicken faeces (Park et al., 2015).

C. jejuni and *C. coli* were the most predominant *Campylobacter* species identified and Salmonella serovar in south and southeast Asian chickens. These results are similar to a systematic review and meta-analysis conducted in Africa region (Thomas et al., 2020). Thermophilic *Campylobacter* species, *C. jejuni, C. coli, C. lari,* and *C. upsaliensis* accounted for the majority of *Campylobacter* isolated so far and cause the majority of human *Campylobacter* infection (Lastovica and le Roux, 2000).

Salmonella enterica serovar Enteritidis was the most commonly identified serovars in chicken samples while *Salmonella enterica* serovar Typhimurium was most identified in egg samples. According to a meta-analysis (Ferrari et al., 2019) *S*. Enteritidis is the most prevalent serovar from poultry origin in Asia. No evidence was found specifying prevalent NTS serovars in chicken eggs. However, according to World Health Organization (2022), these two serovars of NTS are transmitted from poultry to human in most parts of the world (WHO, 2022).

The extent of publication bias in the selected studies (sample unit, chicken unit and farm unit prevalences) was measured and demonstrated by the funnel plot. Except the farm unit studies, the funnel plots were clearly not symmetrical and some of the points fall outside of the funnel, indicating publication bias. The sources of the funnel plot asymmetry were tested by Egger test, the result of which confirmed small study effects in sample unit prevalences for both the pathogens. However, there are many different possible factors for funnel plot asymmetry, namely selection bias, true heterogeneity, data irregularities, artifact as well as by chance (Egger et al. 1997).

Where prevalence data show that end product samples in south and south-east Asia are highly contaminated with *Campylobacter* or NTS, as was the case for chicken meat, organs and eggs; local and national policy makers and enforcers may be able to more effectively develop control measures to reduce these potential pathogens in the food chain.

While source attribution studies to show link with human have been performed in some parts of the world, few are available for *Campylobacter* and NTS in south and south-east Asia (Myintzawet al., 2023). It is important to ascertain whether or not increasing scales and intensification of meat production are contributing to human disease in South and south-east Asia. The presence of *Campylobacter* and NTS in food animals and meat products may or may not indicate human disease risk. We have shown, *Campylobacter* species and NTS serovars identified, vary according to geographical location, study site and sample. Without a more in depth look at the link between chicken and human isolates, such as whole genome sequencing and patterns of human exposure, including raw meat and egg handling and cooking practices, we have less information about whether or not *Campylobacter* and NTS from South and southeast Asian food animals are contributing to human disease.

There were many studies where the authors did not report some important information such as- study period, sampling approach, study level, study site, production type and health status. Therefore, the authors should carefully report all these information to make their studies more impactful.

There were some limitations while conducting this systematic literature review and meta-analysis. Our formal bias assessment determined the overall risk of bias from sampling approach (probabilistic or non-probabilistic), study level (district, single province or multiple province) and detection method (culture, biochemical and polymerase chain reaction (PCR). Most of the studies belonged to quality-2 studies (11.8% *Campylobacter* studies and 98.8% NTS studies) which could introduce potential bias in the results.

No *Campylobacter* studies were conducted in chicken in Brunei Darussalam, Indonesia, Lao People's Democratic Republic, Myanmar, Timor-Leste, Afghanistan, Bhutan, Maldives and Nepal. And no NTS studies were conducted in Afghanistan, Lao People's Democratic Republic, Timor-leste and Maldives. The pooled estimates could not be conducted for these countries for the respective pathogens.

We did not include the subgroups having fewer than 10 studies in meta-regression out of concern about a reduction in the association detection power of the test. Moreover, several variables had categories labeled "not mentioned" and mixed type sample or study site due to missing information in the literatures. These variables were not evaluated for potential causes of heterogeneity between studies, thereby lacking adequate details. Asymmetric funnel plots, as well as outcomes of the Egger test, showed that publication bias was prevalent throughout the studies in most subgroups. However, true heterogeneity, selection bias, study level differences, data irregularities, and artifacts could be accountable for this (Egger et al. 1997). Therefore, the results should be interpreted with caution.

There are also some other limitations, and are worth noting when interpreting our results. First, the review did not include any non-English literature, which would have led to the exclusion of a few relevant studies. However, we lessened the likelihood of this happening by multiple databases searching and employing a search verification approach where the English translated literature should have been present. Second, several studies presented prevalence data merged with environmental samples or other livestock species and couldn't be sorted, thereby being excluded. Thirdly, the studies had to be excluded that reported number of isolates for different and *Campylobacter* species and serovars instead of the number of positive samples for those species and serovar. Fourthly, we could not perform multivariable meta-regression as there were different number of studies in different subgroups. Finally, the relatively small number of studies in a few subgroups, which may overestimate or underestimate the calculated pooled prevalence, limits the power of the meta-analysis.

Chapter-6: Conclusion, Recommendation and Future Direction

Both *Campylobacter* and non-typhoidal *Salmonella* (NTS) were most prevalent among samples from Thailand, and were less common among samples from India. Live bird markets (LBM) showed the highest prevalence for *Campylobacter* while NTS was most prevalent in retail outlets. Non-typhoidal *Salmonella* was detected more in carcass and raw meat samples. Egg shells contained more NTS than egg content. *C. jejuni* and *C. coli* were the predominant *Campylobacter* species and *Salmonella enterica* serovar Enteritidis and Typhimurium were the most commonly identified *Salmonella* serovar in south and southeast Asian chicken and chicken eggs. However, due to substantial level of heterogeneity among the studies, existence of publication bias and significant small study effect, the interpretation of the findings should be done with caution.

6.1. Recommendations

- I. Maintaining good sanitary measures in live bird markets (LBM) and retail outlets will reduce the contamination to a great extent.
- II. Training in hygienic food handling for transportation staffs, LBM workers and retail outlet workers is essential to keep contamination to a minimum.
- III. Regular monitoring of the LBMs and retail outlets to maintain hygienic environment in both the settings is crucial.
- IV. Chicken meat or egg should be properly cooked before eating and raw or undercooked meat and should always be avoided.

6.2. Future directions

- I. A comprehensive study along the different nodes of chicken meat/egg value chains should be thought of estimating the true status of *Campylobacter* and NTS; and identifying riskiest nodes for specific intervention.
- II. Testing different intervention strategies (for example, training versus penalty) to maintain good hygienic practices at live bird markets (LBM) and retail outlets should be carried out to identify and implement more effective intervention measures.
- III. Knowledge, attitude and practices of the LBM and retail outlet workers about maintaining hygiene should be studied in detail to identify the gaps and develop proper training strategy for them.
- IV. The high prevalence of these organisms in chicken and chicken eggs, their important role as human pathogens, and lack of evidence on direct contribution to human illness in South and southeast Asia, indicate source attribution studies would be a useful tool to more definitively identify priorities for food safety interventions.

References

- Abatcha MG, Effarizah ME, Rusul G.2018. Prevalence, antimicrobial resistance, resistance genes and class 1 integrons of *Samonella* serovars in leafy vegetables, chicken carcasses and related processing environments in Malaysian fresh food markets. Food Control. 1(91): 170-80.
- Abukhattab S, Taweel H, Awad A, Crump L, Vonaesch P, Zinsstag J, Hattendorf J, Abu-Rmeileh NM. 2022. Systematic Review and Meta-Analysis of Integrated Studies on *Samonella* and *Campylobacter* Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. Antibiotics. 11(5): 536.
- Adesiji YO, Shivakumaraswamy SK, Deekshit VK, Kallappa GS, Karunasagar I. 2018. Molecular characterization of antimicrobial multi-drug resistance in non-typhoidal *Samonellae* from chicken and clam in Mangalore, India. Journal of Biomedical Research. 32(3): 237.
- Aditya A. 2015. Drug resistant *Samonella* in broiler chicken sold at local market in Bangladesh and its public health significance. African Journal of Biotechnology. 14(43): 2995-3000.
- Akbar A, Anal AK. 2013. Prevalence and antibiogram study of *Samonella* and *Staphylococcus aureus* in poultry meat. Asian Pacific journal of tropical biomedicine. 3(2): 163-8.
- Akbar A, Anal AK. 2015. Isolation of *Samonella* from ready-to-eat poultry meat and evaluation of its survival at low temperature, microwaving and simulated gastric fluids. Journal of food science and technology. 52: 3051-7.
- Akhtar F, Hussain I, Khan A, Rahman SU. 2010. Prevalence and antibiogram studies of Samonella enteritidis isolated from human and poultry sources. Pakistani Veterinary Journal. 230(1): 25-8.
- Alam SB, Mahmud M, Akter R, Hasan M, Sobur A, Nazir KN, Noreddin A, Rahman T, El Zowalaty ME, Rahman M. 2020. Molecular detection of multidrug resistant *Samonella* species isolated from broiler farm in Bangladesh. Pathogens. 9(3): 201.

- Al-Sakkaf A. 2012. Evaluation of food handling practice among New Zealanders and other developed countries as a main risk factor for Campylobacteriosis rate. Food Control. 27(2): 330-7.
- Al-Salauddin AS, Hossain MF, Dutta A, Mahmud S, Islam MS, Saha S, Kabir SL. 2015. Isolation, identification, and antibiogram studies of *Samonella* species and Escherichia *coli* from boiler meat in some selected areas of Bangladesh.International Journal of Clinical Pharmacology. 4(5): 999-1003.
- Ananchaipattana C, Bari ML, Inatsu Y. 2016. Bacterial contamination into ready-to-eat foods sold in middle Thailand. Biocontrol Science. 21(4): 225-30.
- Anderson TC, Nguyen TA, Adams JK, Garrett NM, Bopp CA, Baker JB, McNeil C, Torres P, Ettestad PJ, Erdman MM, Brinson DL. 2016. Multistate outbreak of human *Samonella* Typhimurium infections linked to live poultry from agricultural feed stores and mailorder hatcheries, United States 2013. One Health. 2: 144-9.
- Angkititrakul S, Chomvarin C, Chaita T, Kanistanon K, Waethewutajarn S. 2005. Epidemiology of antimicrobial resistance in *Samonella* isolated from pork, chicken meat and humans in Thailand. Southeast Asian Journal of Tropical Medicine & Public Health. 36(6): 1510-5.
- Antillón M, Warren JL, Crawford FW, Weinberger DM, Kürüm E, Pak GD, Marks F, Pitzer VE. 2017. The burden of typhoid fever in low-and middle-income countries: a meta-regression approach. PLoS neglected Tropical Diseases. 11(2): e0005376.
- Antunes P, Mourão J, Campos J, Peixe L. 2016. Samonellosis: the role of poultry meat. Clinical Microbiology and Infection. 22(2): 110-21.
- Anukampa, Shagufta B, Sivakumar M, Kumar S, Agarwal RK, Bhilegaonkar KN, Kumar A, Dubal ZB. 2017. Antimicrobial resistance and typing of *Samonella* isolated from street vended foods and associated environment. Journal of Food Science and Technology. 54: 2532-9.
- Arora D, Kumar S, Jindal N, Narang G, Kapoor PK, Mahajan NK. 2015. Prevalence and epidemiology of *Samonella enterica* serovar Gallinarum from poultry in some parts of Haryana, India. Veterinary World. 8(11): 1300.

- Arshad F, Zahoor T. 2019. Assessing the microbiological safety status of most commonly consumed food items sold at local and branded restaurants of Faisalabad, Pakistani Journal of Food Safety. 39(1): e12587.
- Asif M, Rahman H, Qasim M, Khan TA, Ullah W, Jie Y. 2017. Molecular detection and antimicrobial resistance profile of zoonotic *Samonella* enteritidis isolated from broiler chickens in Kohat, Pakistan. Journal of the Chinese Medical Association. 80(5): 303-6.
- Aung KT, Chau ML, Mak KW, Lim N, Oh JQ, Kang JS, Lim YH, Goh TL, Yap HM, Gutiérrez RA, Ng LC. 2018. Microbiological assessment of chicken meat sold at chicken rice stalls in Singapore. Southeast Asian Journal of Tropical Medicine and Public Health. 49(6): 1043-52.
- Badhe SR, Fairoze N, Sudarshan S. 2013. Prevalence of food borne pathogens in market samples of chicken meat in Bangalore, India. Indian Journal of Animal Research. 47(3): 262-4.
- Bandekar JR, Raut AD, Kapadnis BP. 2005. Occurrence of *Campylobacter* in local poultry meat in Pune and Mumbai. Barc Newsletter. 261: 120. [cited 2023 12 June]. Available from:
 https://www.researchgate.net/publication/268424955_Occurrence_of_*Campylobacter*in Local Poultry Meat in Pune_and Mumbai.
- Bangtrakulnonth A, Pornrungwong S, Pulsrikarn C, Boonmar S, Yamaguchi K. 2006. Recovery of *Samonella* using a combination of selective enrichment media and antimicrobial resistance of isolates in meat in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health. 37(4): 742.
- Bantawa K, Rai K, Subba Limbu D, Khanal H. 2018. Food-borne bacterial pathogens in marketed raw meat of Dharan, eastern Nepal. BMC Research Notes. 11: 1-5.
- Bao VN, Fries R, Zessin KH, Kyule MN, Pinthong R, Baumann MP. 2006. Samonella and Campylobacter in broiler carcasses in Vietnam. Proceedings of the 11th International Symposium Veterinary Epidemiology and Economics 2006.
- Begum S, Sekar M, Gunaseelan L, Gawande M, Suganya G, Malar PA, Karthikeyan A. 2015. Molecular identification of *Campylobacter jejuni* and *coli* from chicken, calves and dogs to determine its potential threat on human being. Veterinary World. 8(12): 1420.

- Bierschenk D, Boucher D, Schroder K. 2017. Samonella-induced inflammasome activation in humans. Molecular Immunology. 86:38-43.
- Biswas PK, Biswas D, Ahmed S, Rahman A, Debnath NC. 2005. A longitudinal study of the incidence of major endemic and epidemic diseases affecting semi-scavenging chickens reared under the Participatory Livestock Development Project areas in Bangladesh. Avian Pathology. 34(4): 303-12.
- Biswas PK, Uddin GM, Barua H, Roy K, Biswas D, Ahad A, Debnath NC. 2006. Causes of loss of Sonali chickens on smallholder households in Bangladesh. Preventive Veterinary Medicine. 76(3-4): 185-195.
- Bodhidatta L, Srijan A, Serichantalergs O, Bangtrakulnonth A, Wongstitwilairung B, McDaniel
 P, Mason CJ. 2013. Bacterial pathogens isolated from raw meat and poultry compared
 with pathogens isolated from children in the same area of rural Thailand. Southeast
 Asian Journal of Tropical Medicine and Public Health. 44(2): 259-72.
- Carrasco E, Morales-Rueda A, García-Gimeno RM. 2012. Cross-contamination and recontamination by *Samonella* in foods: A review. Food Research International. 45(2): 545-56.
- Carron M, Chang YM, Momanyi K, Akoko J, Kiiru J, Bettridge J, Chaloner G, Rushton J, O'Brien S, Williams N, Fevre EM. 2018. *Campylobacter*, a zoonotic pathogen of global importance: Prevalence and risk factors in the fast-evolving chicken meat system of Nairobi, Kenya. PLoS Neglected Tropical Diseases. 12(8): e0006658.
- Centers for Disease Control and Prevention. 2023. National Center for Emerging and Zoonotic Infectious Diseases. [cited 2023 June 11]. Available from: https://wwwnc.cdc.gov/travel/yellowbook/2024/preparing/travelers-diarrhea.
- Centers for Disease Control and Prevention. 2023. *Campylobacter*. [cited 2023 June 11]. Available from: https://www.cdc.gov/*Campylobacter*/symptoms.html.
- Centers for Disease Control and Prevention. 2023. *Samonella*. [cited 2023 June 11]. Available from: https://www.cdc.gov/*Samonella*/general/*Samonella*-symptoms.html.
- Chaisatit C, Tribuddharat C, Pulsrikarn C, Dejsirilert S. 2012. Molecular characterization of antibiotic-resistant bacteria in contaminated chicken meat sold at supermarkets in Bangkok, Thailand. Japanese Journal of Infectious Diseases. 65(6): 527-34.

- Chattopadhyay UK, Rashid M. 2003. Rapid screening of chicken intestinal contents for *Campylobacter jejuni* using coagglutination. The Veterinary Record. 152(21): 654-5.
- Chen HM, Wang Y, Su LH, Chiu CH. 2013. Nontyphoid *Samonella* infection: microbiology, clinical features, and antimicrobial therapy. Pediatrics & Neonatology. 54(3): 147-52.
- Chokboonmongkol C, Patchanee P, Gölz G, Zessin KH, Alter T. 2013. Prevalence, quantitative load, and antimicrobial resistance of *Campylobacter* spp. from broiler ceca and broiler skin samples in Thailand. Poultry Science. 92(2): 462-7.
- Chotinun S, Rojanasthien S, Unger F, Tadee P, Patchanee P. 2014. Prevalence and antimicrobial resistance of *Samonella* isolated from carcasses, processing facilities and the environment surrounding small scale poultry slaughterhouses in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health. 45(6): 1392.
- Dahal N, Ellerbroek L, Poosaran N. 2007. Prevalence and antimicrobial resistance of Samonella in imported chicken carcasses in Bhutan. National Centre of Animal Health. 1: 1-92.
- Dao HT, Yen PT. 2006. Study of *Samonella*, *Campylobacter*, and Escherichia *coli* contamination in raw food available in factories, schools, and hospital canteens in Hanoi, Vietnam. Annals of the New York Academy of Sciences. 1081(1): 262-5.
- Das A, Hari SS, Shalini U, Ganeshkumar A, Karthikeyan M. 2012. Molecular screening of virulence genes from *Samonella enterica* isolated from commercial food stuffs. Bioscience and Biotechnical Research Asia. 9: 363-9.
- De Jong HK, Parry CM, van der Poll T, Wiersinga WJ. 2012. Host-pathogen interaction in invasive Samonellosis. PLoS Pathology. 8(10): e1002933.
- Dean AS, Crump L, Greter H, Schelling E, Zinsstag J. 2012. Global burden of human brucellosis: a systematic review of disease frequency. PLoS Neglected Tropical Diseases. 6(10): e1865.
- Dunkley KD, Callaway TR, Chalova VI, McReynolds JL, Hume ME, Dunkley CS, Kubena LF, Nisbet DJ, Ricke SC. 2009. Foodborne *Samonella* ecology in the avian gastrointestinal tract. Anaerobe. 15(1-2):26-35.
- Egger M, Smith GD, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. The BMJ. 315(7109): 629-34.

- Ejaz S, Aslam U, Woong LC. 2004. A note on the prevalence of *Campylobacters* in chicken flocks in Pakistan. Journal of Animal and Feed Sciences. 13(2):323-8.
- Ellerbroek L, Narapati D, Tai NP, Poosaran N, Pinthong R, Sirimalaisuwan A, Tshering P, Fries R, Zessin KH, Baumann M, Schroeter A. 2010. Antibiotic resistance in *Samonella* isolates from imported chicken carcasses in Bhutan and from pig carcasses in Vietnam. Journal of Food Protection. 73(2): 376-9.
- European Food Safety Authority. 2017. European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal. 15(12): e05077. https://www.ecdc.europa.eu/en/publications-data/european-union-summary-reporttrends-and-sources-zoonoses-zoonotic-agents-and-9.
- European Food Safety Authority. 2018. European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2017. EFSA Journal. 16(12): 5500.
 [cited 2023 June 22]. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/5500.
- Evangelopoulou G, Filioussis G, Kritas S, Christodoulopoulos G, Triantafillou EA, Burriel AR. 2015. Colonisation of pig gallbladders with *Samonella* species important to public health. Medicina. 12: 60-4.
- Fàbrega A, Vila J. *Samonella enterica* serovar Typhimurium skills to succeed in the host: virulence and regulation. 2013. Clinical Microbiology Reviews. 26(2): 308-41.
- Fardows J, Shamsuzzaman SM. 2015. Detection of potential pathogenic aerobic bacteria from egg shell and egg contents of hen collected from poultry. Bangladesh Medical Research Council Bulletin. 41(2): 67-72.
- Ferrari RG, Rosario DK, Cunha-Neto A, Mano SB, Figueiredo EE, Conte-Junior CA. 2019. Worldwide epidemiology of *Samonella* serovars in animal-based foods: a metaanalysis. Applied and Environmental Microbiology. 85(14): e00591-19.
- Galate L, Bangde S. 2015. *Campylobacter*—A foodborne pathogen. International Journal of Scientific Research. 4: 1250-9.

- Garin B, Gouali M, Wouafo M, Perchec AM, Thu PM, Ravaonindrina N, Urbès F, Gay M, Diawara A, Leclercq A, Rocourt J. 2012. Prevalence, quantification and antimicrobial resistance of *Campylobacter* spp. on chicken neck-skins at points of slaughter in 5 major cities located on 4 continents. International Journal of Food Microbiology. 157(1): 102-7.
- Gautam RK, Kakatkar AS, Karani MN, Bandekar JR. 2017. Samonella in Indian ready-to-cook poultry: antibiotic resistance and molecular characterization. Microbiology Research. 8(1): 6882.
- Geetha M. 2013. Molecular Identification of *Campylobacter Jejuni* in Chicken Meat by Polymerase Chain Reaction. Indian Veterinary Journal. 90(12): 87.
- Geidam YA, Zunita Z, Saleha AA, Siti KB, Jalila A, Sharina O. 2012. High prevalence of multidrug resistant bacteria in selected poultry farms in Selangor, Malaysia. Asian Journal of Animal and Veterinary Advances. 7(9): 891-7.
- Grace D. 2017. Food Safety in Developing Countries: Research Gaps and Opportunities. White Paper. ILRI, Nairobi, Kenya. [cited 2023 July 10]. Available from: http://refhub.elsevier.com/S0168-1605(19)30312-5/rf0605.
- Hald B, Skov MN, Nielsen EM, Rahbek C, Madsen JJ, Wainø M, Chriél M, Nordentoft S, Baggesen DL, Madsen M. 2015. *Campylobacter jejuni* and *Campylobacter coli* in wild birds on Danish livestock farms. Acta Veterinaria Scandinavica. 58: 1-10.
- Hald T. 2013. Foodborne Infections and Intoxications: Chapter 5. Pathogen Updates: *Samonella*. Elsevier Inc. Chapters.
- Hanh TT, Thanh NT, Thoa HQ, Thi LT, Thuan LM, Ly NT. 2006. Prevalence of *Samonella* spp. in poultry in Vietnam. Annals of the New York Academy of Sciences. 1081(1): 266-8.
- Hasan MM, Talukder S, Mandal AK, Tasmim ST, Parvin MS, Ali MY, Sikder MH, Islam MT. 2020. Prevalence and risk factors of *Campylobacter* infection in broiler and cockerel flocks in Mymensingh and Gazipur districts of Bangladesh. Preventive Veterinary Medicine. 180: 105034.
- Hathai T, Yamaguchi R. 2012. Molecular characterization of antibiotic-resistant Samonella isolates from retail meat from markets in Northern Vietnam. Journal of food protection. 75(9): 1709-14.

- Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, De Silva NR, Gargouri N, Speybroeck N. 2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine. 12(12): e1001923.
- Hung YT, Lay CJ, Wang CL, Koo M. 2017. Characteristics of nontyphoidal Samonella gastroenteritis in Taiwanese children: A 9-year period retrospective medical record review. Journal of Infection and Public Health. 10(5): 518-21.
- Huong LQ, Reinhard F, Padungtod P, Hanh TT, Kyule MN, Baumann MP, Zessin KH. 2006. Prevalence of *Samonella* in retail chicken meat in Hanoi, Vietnam. Annals of the New York Academy of Sciences. 1081(1): 257-61.
- Huong LQ, Thi Hanh TR, Dac Cam PH, Thi Be NG. 2006. Study on the prevalence of *Campylobacter* spp. from chicken meat in Hanoi, Vietnam. Annals of the New York Academy of Sciences. 1081(1): 273-5.
- Hurtado A, Ocejo M, Oporto B. 2017. *Samonella* spp. and Listeria monocytogenes shedding in domestic ruminants and characterization of potentially pathogenic strains. Veterinary Microbiology. 210: 71-6.
- Hussain I, Mahmood MS, Akhtar M, Khan A. 2007. Prevalence of *Campylobacter* species in meat, milk and other food commodities in Pakistan. Food Microbiology. 24(3): 219-22.
- Ibrahim MJ, Abdul-Aziz S, Bitrus AA, Mohammed DG, Abu J, Bejo SK, Mohamed MA. 2018. Occurrence of multidrug resistant (MDR) *Campylobacterspecies* isolated from retail chicken meats in Selangor, Malaysia and their associated risk factors. Malaysian Journal of Microbiology. 272-81.
- Islam MK, Kabir SL, Haque AZ, Sarker YA, Sikder MH. 2018. Molecular detection and characterization of Escherichia *coli*, *Samonella* spp. and *Campylobacter* spp. isolated from broiler meat in Jamalpur, Tangail, Netrokona and Kishoreganj districts of Bangladesh. African Journal of Microbiology Research. 12(32): 761-70.
- Jajere SM, Hassan L, Aziz SA, Zakaria Z, Abu J, Nordin F, Faiz NM. 2019. Samonella in native "village" chickens (Gallus domesticus): Prevalence and risk factors from farms in South-Central Peninsular Malaysia. Poultry Science. 98(11): 5961-70.

- Jiang C, Shaw KS, Upperman CR, Blythe D, Mitchell C, Murtugudde R, Sapkota AR, Sapkota A. 2015. Climate change, extreme events and increased risk of Samonellosis in Maryland, USA: Evidence for coastal vulnerability. Environment International. 83: 58-62.
- Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, McKeever D, Mutua F, Young J, McDermott J, Pfeiffer DU. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 2013 May 21 May 2013. Abstract Book, p 8399-8404.
- Josefsen MH, Bhunia AK, Engvall EO, Fachmann MS, Hoorfar J. 2015. Monitoring *Campylobacter* in the poultry production chain—from culture to genes and beyond. Journal of microbiological methods. 112: 118-25.
- Kabir SM, Sumon MH, Amin MM, Yamasaki S. Isolation, identification and antimicrobial resistance patterns of *Campylobacter* species from broiler meat sold at KR Market of Bangladesh Agricultural University Campus, Mymensingh Journal of Agriculture and Food Technology. 4(4):15-21.
- Kalupahana RS, Kottawatta KS, Abeynayake P. 2009. Study on the prevalence and the age at initial colonization of *Campylobacter* in broiler flocks in central province of Sri Lanka. FAO/IAEA international symposium on sustainable improvement of animal production and health.
- Kalupahana RS, Mughini-Gras L, Kottawatta SA, Somarathne S, Gamage C, Wagenaar JA. 2018. Weather correlates of *Campylobacter* prevalence in broilers at slaughter under tropical conditions in Sri Lanka. Epidemiology & Infection.146(8): 972-979.
- Kalupahana RS, Rajapaksa DI, Fernando PS, Thilakarathne DS, Abeynayake P. 2017. Occurrence and characterization of nontyphoidal *Samonella* in retail table eggs in Kandy district of Sri Lanka. Food control. 72: 244-248.
- Kashoma IP, Kassem II, Kumar A, Kessy BM, Gebreyes W, Kazwala RR, Rajashekara G. 2015. Antimicrobial resistance and genotypic diversity of *Campylobacter* isolated from pigs, dairy, and beef cattle in Tanzania. Frontiers in Microbiology. 6: 1240.

- Kaushik P, Kumari S, Bharti SK, Dayal S. 2014. Isolation and prevalence of *Samonella* from chicken meat and cattle milk collected from local markets of Patna, India. Veterinary World. 7(2): 62.
- Khan JA, Mir IA, Maherchandani SS. 2015. A Study on Prevalence and Virulence Characterisation of *Samonella enterica* subsp. *enterica* isolated from Poultry and Related Environment in India. Journal of Pure and Applied Microbiology. 9(2): 1435-40.
- Khan JA, Rathore RS, Abulreesh HH, Qais FA, Ahmad I. 2018. Prevalence and antibiotic resistance profiles of *Campylobacter jejuni* isolated from poultry meat and related samples at retail shops in Northern India. Foodborne Pathogens and Disease.15(4): 218-225.
- Khan SB, Khan MA, Ahmad I, ur Rehman T, Ullah S, Dad R, Sultan A, Memon AM. 2019. Phentotypic, gentotypic antimicrobial resistance and pathogenicity of *Samonella enterica* serovars Typimurium and Enteriditis in poultry and poultry products. Microbial Pathogenesis. 129: 118-24.
- Kim Y, Biswas PK, Giasuddin M, Hasan M, Mahmud R, Chang YM, Essen S, Samad MA, Lewis NS, Brown IH, Moyen N. 2018. Prevalence of avian influenza A (H5) and A (H9) viruses in live bird markets, Bangladesh. Emerging Infectious Diseases. 24(12): 2309.
- Kit AY, Mei-Jean L, Xiang YC, Ming LK, Yee NS, Mae LS. 2015. Antimicrobial resistance of Escherichia *coli*, *Samonella* and enterococci isolated from surface of conventional broiler eggs, "Kampung" chicken eggs and carrying trays from wet markets in Selangor, Malaysia. Malaysian Journal of Microbiology. 2015: 109-115.
- Kottawatta KS, Van Bergen MA, Abeynayake P, Wagenaar JA, Veldman KT, Kalupahana RS. 2017. *Campylobacter* in broiler chicken and broiler meat in Sri Lanka: Influence of semi-automated vs. wet market processing on *Campylobacter* contamination of broiler neck skin samples. Foods. 6(12): 105.
- Krutkiewicz A. 2008. Kampylobakteriozy u ludzi i zwierząt. Życie Weterynaryjne. 83(4): 285-8.
- Kulasooriya GD, Amarasiri MK, Abeykoon AM, Kalupahana RS. 2019. Samonella, Campylobacter and Escherichia coli in raw chicken meat, chicken products and cooked

chicken in retail markets in Kandy, Sri Lanka. Sri Lanka Veterinary Journal. 66(1): 19-26.

- Kumar A, Kumar MS, Bagalakot PS. 2015. Comparative analysis of cultural isolation and PCR based assay for detection of *Campylobacter jejuni* and *Campylobacter coli* in foods of animal origin. Journal of Animal Research. 5(1): 21-5.
- Kumar P, Gogoi SM, Deshpande AA, Gulhane AB. Samonellosis in commercial layer poultry birds in certain parts of india: prevalence and antibiotic resistance patterns. Indian Journal of Animal Health. 54(2): 139-48.
- Kumar T, Mahajan NK, Rakha NK. 2010. Epidemiology of fowl typhoid in Haryana, India. World's Poultry Science Journal. 66(3): 503-10.
- Lastovica AJ, le Roux E. 2000. Efficient isolation of *Campylobacter*ia from stools. Journal of Clinical Microbiology. 38(7): 2798.
- Latha C, Anu CJ, Ajaykumar VJ, Sunil B. 2017. Prevalence of Listeria monocytogenes, Yersinia entero*coli*tica, *Staphylococcus aureus*, and *Samonella enterica* Typhimurium in meat and meat products using multiplex polymerase chain reaction. Veterinary World. 10(8): 927.
- Lay KS, Vuthy Y, Song P, Phol K, Sarthou JL. 2011. Prevalence, numbers and antimicrobial susceptibilities of *Samonella* serovars and *Campylobacter* spp. in retail poultry in Phnom Penh, Cambodia. Journal of Veterinary Medical Science.73(3): 325-329.
- Leder K, Torresi J, Brownstein JS, Wilson ME, Keystone JS, Barnett E, Schwartz E, Schlagenhauf P, Wilder-Smith A, Castelli F, von Sonnenburg F. 2013. Travel-associated illness trends and clusters, 2000–2010. Emerging Infectious Diseases. 19(7): 1049.
- Lertworapreecha M, Sutthimusik S, Tontikapong K. 2013. Antimicrobial resistance in *Samonella enterica* isolated from pork, chicken, and vegetables in southern Thailand. Journal of Microbiology. 6(1): 36-41.
- Li HP, Wang H, D'Aoust JY, Maurer J. 2013. *Samonella* species (Chapter 10). In: Doyle MP, Buchanan R, editors. Food Microbiology: Fundamentals and Frontiers. 4th ed. ASM Press: Washington, DC, USA. pp. 225–261.
- Lim PW, Tiam-Lee DC, Paclibare PA, Subejano MS, Cabero-Palma JA, Penuliar GM. 2017. High rates of contamination of poultry meat products with drug-resistant

Campylobacter in Metro Manila, Philippines. Japanese Journal of Infectious Diseases. 70(3): 311-313.

- Lin J. 2009. Novel approaches for *Campylobacter* control in poultry. Foodborne Pathogens and Disease. 6(7): 755-765.
- Madhurangi GH, Fernando TS, Bulumulla PB, Chandrasena G. 2014. Prevalence of Escherichia *coli* and *Samonella* on Different Cuts of Retail Chicken Meat in Badulla District. Veterinary World. 7(10): 784-7.
- Maharjan M, Joshi V, Joshi DD, Manandhar P. 2006. Prevalence of *Samonella* species in various raw meat samples of a local market in Kathmandu. Annals of the New York Academy of Sciences. 1081(1): 249-256.
- Mahato S. 2019. Relationship of sanitation parameters with microbial diversity and load in raw meat from the outlets of the Metropolitan city Biratnagar, Nepal. International Journal of Microbiology. 2019: 1-7.
- Mahmud MS, Bari ML, Hossain MA. 2011. Prevalence of *Samonella* serovars and antimicrobial resistance profiles in poultry of Savar area, Bangladesh. Foodborne Pathogens and Disease. 8(10): 1111-8.
- Malik H, Ashok K, Rajagunalan S, Kataria JL, Swati S. 2014. Prevalence of *Campylobacter jejuni* and *Campylobacter coli* among broilers in Bareilly region. Veterinary World. 7(10): 784-7.
- Mallhi IY, Sohaib M, Khan AU, Nawaz M, Abdullah. 2019. Evaluating food safety knowledge, practices, and microbial profile of meat in abattoirs and butchery shops in Lahore, Pakistan. Journal of Food Safety. 39(2): e12612.
- Manguiat LS, Fang TJ. 2013. Microbiological quality of chicken-and pork-based street-vended foods from Taichung, Taiwan, and Laguna, Philippines. Food Microbiology. 36(1): 57-62.
- Mani M, Pandey R, Rautela R, Trivedi R. 2018. Epidemiological Studies on Animals and Humans as Reservoirs of Thermophilic *Campylobacters*. International Journal of Livestock Research. 8(6): 203-211.

- Mansouri-Najand L, Saleha AA, Wai SS. 2012. Prevalence of multidrug resistance *Campylobacter jejuni* and *Campylobacter coli* in chickens slaughtered in selected markets, Malaysia. Tropical biomedicine. 29(2): 231-8.
- Maripandi A, Al-Salamah AA. 2010. Multiple-antibiotic resistance and plasmid profiles of *Samonella* enteritidis isolated from retail chicken meats. American Journal of Food Technology. 5(4): 260-8.
- Mat Zin AA, Aklilu E, Goriman Khan MA, Hamdan R, Imad Ibrahim AS, Soon JM. 2017. Microbiological quality of cooked meat products sold in Kelantan, Malaysia during Ramadhan month. International Food Research Journal. 24(1): 414-21.
- Mathew AG, Liamthong S, Lin J, Hong Y. 2009. Evidence of class 1 integron transfer between Escherichia *coli* and *Samonella* spp. on livestock farms. Foodborne Pathogens and Disease. 6(8): 959-64.
- Menghistu HT, Rathore R, Dhama K, Agarwal RK. 2011. Isolation, identification and polymerase chain reaction (PCR) detection of *Samonella* species from field materials of poultry origin. Intl J Microbiol Res. 2(2): 135-42.
- Minami A, Chaicumpa W, Chongsa-Nguan M, Samosornsuk S, Monden S, Takeshi K, Makino SI, Kawamoto K. 2010. Prevalence of foodborne pathogens in open markets and supermarkets in Thailand. Food Control. 21(3): 221-6.
- Mir IA, Kashyap SK, Maherchandani S. 2015. Isolation, serotype diversity and antibiogram of *Samonella enterica* isolated from different species of poultry in India. Asian Pacific Journal of Tropical Biomedicine. 5(7): 561-7.
- Mir IA, Wani SA, Hussain I, Qureshi SD, Bhat MA, Nishikawa Y. 2010. Molecular epidemiology and in vitro antimicrobial susceptibility of *Samonella* isolated from poultry in Kashmir. Revue scientifique et technique. 29(3): 677.
- Modi S, Brahmbhatt MN, Chatur YA, Nayak JB. 2015. Prevalence of *Campylobacter* species in milk and milk products, their virulence gene profile and anti-bio gram. Veterinary World. 8(1): 1.
- Moe AZ, Paulsen P, Pichpol D, Fries R, Irsigler H, Baumann MP, Oo KN. 2017. Prevalence and antimicrobial resistance of *Samonella* isolates from chicken carcasses in retail markets in Yangon, Myanmar. Journal of Food Protection. 80(6): 947-51.

- Mohamed-Yousif IM, Abdul-Aziz S, Abu J, Khairani-Bejo S, Puan CL, Bitrus AA, Aliyu AB, Awad EA. 2019. Occurrence of antibiotic resistant *Campylobacter* in wild birds and poultry. Malaysian Journal of Microbiology. 15(2): 143-151.
- Monack DM. 2012. Samonella persistence and transmission strategies. Current Opinion in Microbiology. 15(1): 100-7.
- Monika, Upadhyay AK, Singh SP, Singh PK, Kumar AI. 2016. Isolation, epidemiological and molecular characterization of *Campylobacter* from meat. International Journal of Innovative Research and Development. 5: 246-8.
- Mridha D, Uddin MN, Alam B, Akhter AT, Islam SS, Islam MS, Khan MS, Kabir SL. 2020. Identification and characterization of *Samonella* spp. from samples of broiler farms in selected districts of Bangladesh. Veterinary World. 13(2): 275.
- MSD Veterinary Manual. 2022. Avian *Campylobacter* Infection. [cited 30 june 2023]. Available from: https://www.msdvetmanual.com/poultry/avian-*Campylobacter*-infection/avian-*Campylobacter*-infection.
- MSD Veterinary Manual. 2022. Salmonelloses in Poultry. [cited 30 june 2023]. Available from: https://www.msdvetmanual.com/poultry/salmonelloses/salmonelloses-in-poultry.
- Murugadas V, Visnuvinayagam S, Purushothaman V, Prabhakar TG, Prabhahar P, Ventakaraman K. 2015. Prevalence of chicken host and non-host adapted *Samonella* in retail outlet of Chennai, India. Asian Journal of Animal and Veterinary Advances. 10: 885-93.
- Murugkar HV, Rahman H, Kumar A, Bhattacharyya D. 2005. Isolation, phage typing & antibiogram of *Samonella* from man & animals in northeastern India. Indian Journal of Medical Research. 122(3): 237.
- Myintzaw P, Jaiswal AK, Jaiswal S. 2023. A review on Campylobacteriosis associated with poultry meat consumption. Food Reviews International. 39(4): 2107-21.
- Nagappa K, Tamuly S, Saxena MK, Singh SP. 2007. Isolation of *Samonella* Typhimurium from poultry eggs and meat of Tarai region of Uttaranchal. Indian Journal of Biotechnology. 6(3): 407-409

- Naik VK, Shakya S, Patyal A, Gade NE. 2015. Isolation and molecular characterization of *Samonella* spp. from chevon and chicken meat collected from different districts of Chhattisgarh, India. Veterinary World. 8(6):702.
- Nair DV, Kollanoor Johny A. 2019. *Samonella* in poultry meat production. Food Safety in Poultry Meat Production. 1-24.
- Nayak R, Stewart TM, Nawaz MS. 2005. PCR identification of *Campylobacter coli* and *Campylobacter jejuni* by partial sequencing of virulence genes. Molecular and Cellular Probes. 19(3): 187-93.
- Neogi SB, Islam MM, Islam SK, Akhter AH, Sikder MM, Yamasaki S, Kabir SM. 2020. Risk of multi-drug resistant *Campylobacter* spp. and residual antimicrobials at poultry farms and live bird markets in Bangladesh. BMC Infectious Diseases. 20(1): 1-4.
- Neunchat P, Yangkao K, Earmsaard N, Chatuphonprasert S, Wiwattrakul J, Manaijsin J, Polruang N, Sopa A, Sukon P, Kanistranon K, Khaengair S. 2017. Samonella prevalence, antibiograms and serotypes from chicken meat and egg in Khon Kaen city, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health.48(6): 1241-7.
- Nghiem MN, Nguyen VT, Jeung EB, Vo TT. 2019. Alternate antimicrobial resistance genes in multidrug resistant *Samonella* spp. isolated from retail meats in Vietnam using RNA-sequencing analysis. Journal of Food Safety. 39(6): e12707.
- Nguyen DT, Kanki M, Do Nguyen P, Le HT, Ngo PT, Tran DN, Le NH, Van Dang C, Kawai T, Kawahara R, Yonogi S. 2016. Prevalence, antibiotic resistance, and extendedspectrum and AmpC β-lactamase productivity of *Samonella* isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. International Journal of Food Microbiology. 236: 115-22.
- Nhung NT, Van NT, Van Cuong N, Duong TT, Nhat TT, Hang TT, Nhi NT, Kiet BT, Hien VB, Ngoc PT, Campbell J. 2018. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal *Samonella* from meat sold at wet markets and supermarkets in Vietnam. International Journal of Food Microbiology. 266: 301-9.

- Nidaullah H, Abirami N, Shamila-Syuhada AK, Chuah LO, Nurul H, Tan TP, Abidin FW, Rusul
 G. 2017. Prevalence of *Samonella* in poultry processing environments in wet markets in Penang and Perlis, Malaysia. Veterinary World. 10(3): 286.
- Nisar M, Mushtaq MH, Shehzad W, Hussain A, Muhammad J, Nagaraja KV, Goyal SM. 2017. Prevalence and antimicrobial resistance patterns of *Campylobacter* spp. isolated from retail meat in Lahore, Pakistan. Food Control. 80: 327-32.
- Niyomdecha N, Mungkornkaew N, Samosornsuk W. 2016. Serotypes and antimicrobial resistance of *Samonella enterica* isolated from pork, chicken meat and lettuce, Bangkok and Central Thailand. Southeast Asian Journal of Tropical Medicine and Public Health. 47(1): 31.
- Novera R, Rahayu WP, Kusumaningrum HD, Indrotristanto N, Nikastri E. 2020. Prevalence of *Samonella* contamination in processing chain of selected chicken-based side dishes. Food research. 4(3): 690-694.
- Organization for Economic Co-operation and Development/Food and Agricultural Organization. 2016. Agriculture in sub-Saharan Africa: prospects and challenges for the next decade. [cited 2023 July 22]. Available from: http://refhub.elsevier.com/S0168-1605(19)30312-5/rf1185.
- Osbjer K, Tano EV, Chhayheng L, Mac-Kwashie AO, Fernström LL, Ellström P, Sokerya S, Sokheng C, Mom V, Chheng K, San S. 2016. Detection of *Campylobacter* in human and animal field samples in Cambodia. APMIS 124(6): 508-15.
- Osiriphun S, Iamtaweejaloen P, Kooprasertying P, Koetsinchai W, Tuitemwong K, Erickson LE, Tuitemwong P. 2011. Exposure assessment and process sensitivity analysis of the contamination of *Campylobacter* in poultry products. Poultry Science. 90(7): 1562-73.
- Padungtod P, Kaneene JB. 2005. *Campylobacter* in food animals and humans in northern Thailand. Journal of Food Protection. 68(12): 2519-26.
- Padungtod P, Kaneene JB. 2006. *Samonella* in food animals and humans in northern Thailand. International Journal of Food Microbiology. 108(3): 346-54.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann T, Mulrow CD, Shamseer L, MoherD. 2020. Mapping of reporting guidance for systematic reviews and meta-analyses

generated a comprehensive item bank for future reporting guidelines. Journal of Clinical Epidemiology. 118: 60-8.

- Park S, Choi S, Kim H, Kim Y, Kim BS, Beuchat LR, Ryu JH. 2015. Fate of mesophilic aerobic bacteria and *Samonella enterica* on the surface of eggs as affected by chicken feces, storage temperature, and relative humidity. Food Microbiology. 48: 200-5.
- Parkar SF, Sachdev D, deSouza N, Kamble A, Suresh G, Munot H, Hanagal D, Shouche Y, Kapadnis B. Prevalence, seasonality and antibiotic susceptibility of thermophilic *Campylobacters* in ceca and carcasses of poultry birds in the "live-bird market". African Journal of Microbiological Research. 7(21): 2442-53.
- Parvej MS, Nazir KN, Rahman MB, Jahan M, Khan MF, Rahman M. 2016. Prevalence and characterization of multi-drug resistant *Samonella enterica* serovar Gallinarum biovar Pullorum and Gallinarum from chicken. Veterinary World. 9(1): 65.
- Patoli BB, Patoli AA, Jabeen S. 2019. Multi-drug resistant *Samonella* species in food and drinking water samples at Hyderabad, Pakistan. Rawal Medical Journal. 44(2): 263.
- Phan TT, Khai LT, Ogasawara N, Tam NT, Okatani AT, Akiba M, Hayashidani H. 2005. Contamination of *Samonella* in retail meats and shrimps in the Mekong Delta, Vietnam. Journal of Food Protection. 68(5): 1077-80.
- Prachantasena S, Charununtakorn P, Muangnoicharoen S, Hankla L, Techawal N, Chaveerach P, Tuitemwong P, Chokesajjawatee N, Williams N, Humphrey T, Luangtongkum T. Climatic factors and prevalence of *Campylobacter* in commercial broiler flocks in Thailand. Poultry Science. 2017 Apr 1;96(4):980-5.
- Prasertsee T, Chokesajjawatee N, Santiyanont P, Chuammitri P, Deeudom M, Tadee P, Patchanee P. 2019. Quantification and rep-PCR characterization of *Samonella* spp. in retail meats and hospital patients in Northern Thailand. Zoonoses and Public Health. 66(3): 301-9.
- Premarathne JM, Satharasinghe DA, Huat JT, Basri DF, Rukayadi Y, Nakaguchi Y, Nishibuchi M, Radu S. 2017. Impact of human *Campylobacter* infections in Southeast Asia: The contribution of the poultry sector. Critical Reviews in Food Science and Nutrition. 57(18): 3971-86.

- Puangburee S, Jindaprasert A, Vattanmanee S, Wongsommart D, Swetwiwathana A. 2016. Microbiological safety of Thai pandan custard filled products and their ingredients. International Food Research Journal. 23(4): 1808.
- Rabby MR, Shah ST, Miah MI, Islam MS, Khan MA, Rahman MS, Malek MA. 2021. Comparative analysis of bacteriological hazards and prevalence of *Samonella* in poultry-meat retailed in wet-and super-markets in Dhaka city, Bangladesh. Journal of Agriculture and Food Research. 6: 100224.
- Rahul Y, Kritika G, Jyotika Y, Mukul P, Taruna B, Anupama D, Pankaj K, Sunil M, Kashyap SK. 2016. Prevalence of thermophilic *Campylobacter jejuni* isolated from cloacal samples of poultry. Haryana Veterinarian. 55(2): 195-7.
- Raja SS, Apparao V, Babu NR, Balamurugan N. 2018. Detecting the Occurrence of *Campylobacter jejuni* in Chicken Meat by PCR in Retail Outlets of Chennai. International Journal of Current Microbiology and Applied Sciences. 7(8): 4174-4177.
- Rajkumar RS, Yadav AS, Rathore RS, Mohan HV, Singh RP. 2010. Prevalence of *Campylobacter jejuni* and *Campylobacter coli* from unorganised and organised small scale poultry dressing units of Northern India. Journal of Veterinary Public Health. 8(1): 1-5.
- Ravel A, Pintar K, Nesbitt A, Pollari F. 2016. Non food-related risk factors of Campylobacteriosis in Canada: a matched case-control study. BMC Public Health.16(1): 1-2.
- Rawat N, Kumar D, Upadhyay AK. Virulence typing and antibiotic susceptibility profiling of thermophilic *Campylobacters* isolated from poultry, animal, and human species. Veterinary World. 11(12): 1698.
- Reddy MV, Pusapukdepod J. 2019. Prevalence of pathogenic organisms in meat samples of Ongkharak Nakhonnayok Thailand. International Journal of Pharmaceutical Sciences. 10(5): 2335-42.
- Rejab SB, Zessin KH, Fries R, Patchanee P. 2012. Comparison of *Campylobacter* contamination levels on chicken carcasses between modern and traditional types of slaughtering facilities in Malaysia. Journal of Veterinary Medical Science. 74(1): 121-4.

- Rizal A, Kumar A, Vidyarthi AS. 2010. Prevalence of pathogenic genes in *Campylobacter jejuni* isolated from poultry and human. Internet Journal of Food Safety. 12: 29-34.
- Rosenberg Goldstein RE, Cruz-Cano R, Jiang C, Palmer A, Blythe D, Ryan P, Hogan B, White
 B, Dunn JR, Libby T, Tobin-D'Angelo M. 2016. Association between community socioeconomic factors, animal feeding operations, and Campylobacteriosis incidence rates: Foodborne Diseases Active Surveillance Network (FoodNet), 2004–2010. BMC Infectious Diseases. 16(1): 1-9.
- Ruban SW, Fairoze N. 2011. Effect of processing conditions on microbiological quality of market poultry meats in Bangalore, India. Journal of Animal and Veterinary Advances. 10(2): 188-91.
- Ryan R. 2016. Heterogeneity and subgroup analyses in Cochrane Consumers and Communication Group reviews: planning the analysis at protocol stage. Cochrane Consumers and Communication Review Group. 2-9.
- Saha M, Debnath C, Biswas MK, Pramanik AK, Murmu D. 2016. Studies on the Prevalence of *Samonella* spp. in meat shop premises intended to sale meat for human consumption in North Kolkata, India. International Journal of Current Microbiology and Applied Sciences. 5(4): 297-302.
- Saharan VV, Verma P, Singh AP. 2020. Escherichia *coli*, *Samonella* spp., and *Staphylococcus aureus* susceptibility to antimicrobials of human and veterinary importance in poultry sector of India. Journal of Food Safety. 40(1): e12742.
- Saikia P, Joshi SR. 2010. Retail market poultry meats of North-East India–a microbiological survey for pathogenic contaminants. Research Journal of Microbiol. 5(1): 36-43.
- Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. 2016. Recent advances in screening of anti-*Campylobacter* activity in probiotics for use in poultry. Frontiers in Microbiology. 7:553.
- Saito S, Yatsuyanagi J, Harata S, Ito Y, Shinagawa K, Suzuki N, Amano KI, Enomoto K. 2005. *Campylobacter jejuni* isolated from retail poultry meat, bovine feces and bile, and human diarrheal samples in Japan: comparison of serotypes and genotypes. FEMS Immunology & Medical Microbiology.45(2): 311-9.

- Saiyudthong S, Phusri K, Buates S. 2015. Rapid detection of *Campylobacter jejuni*, *Campylobacter coli*, and *Campylobacter* lari in fresh chicken meat and by-products in Bangkok, Thailand, using modified multiplex PCR. Journal of Food Protection. 78(7): 1363-9.
- Sajid SU, Sajid M, Hashmi RI. 2015. Isolation studies on the prevalence of *Samonellae* in chicken organs, eggs and feed components. Journal of Ayub Medical College Abbottabad. 27(3): 530-3.
- Samad A, Abbas F, Ahmad Z, Pokryrshko O, Asmat TM. 2018. Prevalence of foodborne pathogens in food items in Quetta, Pakistan. Pakistan Journal of Zoology. 50(4): 1-4.
- Samad A, Abbas F, Tanveer Z, Ahmad Z, Asmat TA, Raziq AB, Zahid M. 2018. Prevalence of Samonella spp. in chicken meat from Quetta retail outlets and typing through multiplex PCR. Romanian Biotechnological Letters. 24(2): 271-9.
- Samanta I, Joardar SN, Das PK, Sar TK, Bandyopadhyay S, Dutta TK, Sarkar U. 2014. Prevalence and antibiotic resistance profiles of *Samonella* serotypes isolated from backyard poultry flocks in West Bengal, India. Journal of Applied Poultry Research. 23(3): 536-45.
- Saravanan S, Purushothaman V, Murthy TR, Sukumar K, Srinivasan P, Gowthaman V, Balusamy M, Atterbury R, Kuchipudi SV. 2015. Molecular epidemiology of Nontyphoidal Samonella in poultry and poultry products in India: implications for human health. Indian Journal of Microbiology. 55(3): 319-26.
- Saud B, Paudel G, Khichaju S, Bajracharya D, Dhungana G, Awasthi MS, Shrestha V. 2019. Multidrug-resistant bacteria from raw meat of buffalo and chicken, Nepal. Veterinary Medicine International. 2019: 1-7.
- Selvaraj R, Das R, Ganguly S, Ganguli M, Dhanalakshmi S, Mukhopadhayay SK. 2010. Characterization and antibiogram of *Samonella* spp. from poultry specimens. Journal of Microbiology and Antimicrobials. 2(9): 123-6.
- Shafini AB, Son R, Mahyudin NA, Rukayadi Y, Zainazor TT. 2017. Prevalence of Samonella spp. in chicken and beef from retail outlets in Malaysia. International Food Research Journal. 24(1): 437.

- Sharma J, Kumar D, Hussain S, Pathak A, Shukla M, Kumar VP, Anisha PN, Rautela R, Upadhyay AK, Singh SP. 2019. Prevalence, antimicrobial resistance and virulence genes characterization of nontyphoidal *Samonella* isolated from retail chicken meat shops in Northern India. Food Control. 102: 104-11.
- Sharma KP, Chattopadhyay UK, Naskar K. 2016. Prevalence of *Campylobacter* species in raw meat samples sold in open markets of Kolkata city. International Journal of Agriculture, Environment and Biotechnology. 9(4): 535-9.
- Siddiqui FM, Akram M, Noureen N, Noreen Z, Bokhari H. 2015. Antibiotic susceptibility profiling and virulence potential of *Campylobacter jejuni* isolates from different sources in Pakistan. Asian Pacific Journal of Tropical Medicine. 8(3): 197-202.
- Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. 2011. *Campylobacter* spp. as a foodborne pathogen: a review. Frontiers in Microbiology. 2: 200.
- Singh R, Singh PP, Rathore RS, Dhama K, Malik SV. 2009. Prevalence of *Campylobacter jejuni* and *Campylobacter coli* in chicken meat and carcasses collected from local poultry farms and retail shops of Bareilly, Uttar Pradesh, India. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases. 30(1): 35-8.
- Singh R, Yadav AS, Tripathi V, Singh RP. 2013. Antimicrobial resistance profile of *Samonella* present in poultry and poultry environment in north India. Food Control. 33(2): 545-8.
- Singh S, Yadav AS, Singh SM, Bharti P. 2010. Prevalence of *Samonella* in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Research International. 43(8): 2027-30.
- Sinulingga TS, Aziz SA, Bitrus AA, Zunita Z, Abu J. 2020. Occurrence of *Campylobacter* species from broiler chickens and chicken meat in Malaysia. Tropical Animal Health and Production. 52: 151-7.
- Sinwat N, Angkittitrakul S, Chuanchuen R. 2015. Characterization of antimicrobial resistance in *Samonella enterica* isolated from pork, chicken meat, and humans in Northeastern Thailand. Foodborne Pathogens and Disease. 12(9): 759-65.
- Sison FB, Chaisowwong W, Alter T, Tiwananthagorn S, Pichpol D, Lampang KN, Baumann MP, Gölz G. 2014. Loads and antimicrobial resistance of *Campylobacter* spp. on fresh chicken meat in Nueva Ecija, Philippines. Poultry science. 93(5): 1270-3.

- Sivaramalingam T, McEwen SA, Pearl DL, Ojkic D, Guerin MT. 2013. A temporal study of Samonella serovars from environmental samples from poultry breeder flocks in Ontario between 1998 and 2008. Canadian Journal of Veterinary Research. 77(1): 1-1.
- Slader J, Domingue G, Jørgensen F, McAlpine K, Owen RJ, Bolton FJ, Humphrey TJ. 2002. Impact of transport crate reuse and of catching and processing on *Campylobacter* and *Samonella* contamination of broiler chickens. Applied and Environmental Microbiology. 68(2): 713-9.
- Soomro AH, Khaskheli M, Bhutto MB, Shah G, Memon A, Dewani P. 2010. Prevalence and antimicrobial resistance of *Samonella* serovars isolated from poultry meat in Hyderabad, Pakistan. Turkish Journal of Veterinary & Animal Sciences. 34(5): 455-60.
- Soriano DM. 2022. Outlook of the poultry industry in Southeast Asia. Veterinaria Digital. [cited 2023 July 24]. Available from: https://www.veterinariadigital.com/en/articulos/outlook-of-the-poultry-industry-insoutheast-asia/.
- Srinivasan P, Balasubramaniam GA, Gopala TR, Murthy K, Saravanan S, Balachandran P. 2014. Prevalence and Pathology of Samonellosis in Commercial Layer Chicken from Namakkal, India. Pakistan Veterinary Journal. 34(3): 324-328.
- Sripaurya B, Ngasaman R, Benjakul S, Vongkamjan K. 2019. Virulence genes and antibiotic resistance of *Samonella* recovered from a wet market in Thailand. Journal of Food Safety. 39(2): e12601.
- Sudhanthirakodi S. 2016. Non-typhoidal *Samonella* isolates from livestock and food samples, Kolkata, India. Journal of Microbiology and Infectious Diseases. 6(3): 113-20.
- Sun T, Liu Y, Qin X, Aspridou Z, Zheng J, Wang X, Li Z, Dong Q. 2021. The prevalence and epidemiology of *Samonella* in retail raw poultry meat in China: A systematic review and meta-analysis. Foods. 10(11): 2757.
- Suresh T, Hatha AA, Sreenivasan D, Sangeetha N, Lashmanaperumalsamy P. 2006. Prevalence and antimicrobial resistance of *Samonella* enteritidis and other *Samonellas* in the eggs and egg-storing trays from retails markets of Coimbatore, South India. Food Microbiology. 23(3): 294-9.

- Ta YT, Nguyen TT, To PB, Pham DX, Le HT, Thi GN, Alali WQ, Walls I, Doyle MP. 2014. Quantification, serovars, and antibiotic resistance of *Samonella* isolated from retail raw chicken meat in Vietnam. Journal of Food Protection. 77(1): 57-66.
- Thomas KM, de Glanville WA, Barker GC, Benschop J, Buza JJ, Cleaveland S, Davis MA, French NP, Mmbaga BT, Prinsen G, Swai ES. 2020. Prevalence of *Campylobacter* and *Samonella* in African food animals and meat: A systematic review and meta-analysis. International Journal of Food Microbiology. 315: 108382.
- Thung TY, Mahyudin NA, Basri DF, Radzi CW, Nakaguchi Y, Nishibuchi M, Radu S. 2016.
 Prevalence and antibiotic resistance of *Samonella* Enteritidis and *Samonella*Typhimurium in raw chicken meat at retail markets in Malaysia. Poultry Science. 95(8): 1888-93.
- Trongjit S, Angkititrakul S, Tuttle RE, Poungseree J, Padungtod P, Chuanchuen R. 2017. Prevalence and antimicrobial resistance in *Samonella enterica* isolated from broiler chickens, pigs and meat products in Thailand–Cambodia border provinces. Microbiology and mmunology. 61(1): 23-33.
- Upadhyay AK, Monika, Maansi, Singh PK, Ipshita, Kumar A. 2016. Epidemiology and Antimicrobial resistance in *Campylobacter*. IOSR Journal of Agriculture and Veterinary Science. 9(2): 06-08.
- Utrarachkij F, Pornraungwong S, Siripanichgon K, Nakajima C, Suzuki Y, Suthienkul O. 2012. Possible horizontal transmission of *Samonella* via reusable egg trays in Thailand. International Journal of Food Microbiology.154(1-2): 73-8.
- Vadhanasin S, Bangtrakulnonth A, Chidkrau T. 2004. Critical control points for monitoring Samonellae reduction in Thai commercial frozen broiler processing. Journal of Food Protection. 67(7): 1480-3.
- Vaeteewootacharn K, Sutra S, Vaeteewootacharn S, Sithigon D, Jamjane O, Chomvarin C, Hahnvajanawong C, Thongskulpanich N, Thaewnon-Giew K. 2005. Samonellosis and the food chain in Khon Kaen, northeastern Thailand. Southeast Asian Journal of Tropical Medicine & Public Health. 36(1): 123-9.

- Vaishnavi C, Singh M, Thapa BR. 2014. Mo1952 Phenotypic and Genotypic Identification of *Campylobacters* in Diarrheal Patients and Poultry in and Around Chandigarh, India. Gastroenterology. 5(146): 700.
- Van TT, Moutafis G, Istivan T, Tran LT, Coloe PJ. 2007. Detection of Samonella spp. in retail raw food samples from Vietnam and characterization of their antibiotic resistance. Applied and Environmental Microbiology.73(21): 6885-90.
- Vindigni SM, Srijan A, Wongstitwilairoong B, Marcus R, Meek J, Riley PL, Mason C. 2007. Prevalence of foodborne microorganisms in retail foods in Thailand. Foodborne Pathogens and Disease. 4(2): 208-15.
- Vivekanandhan R, Dubal ZB, Muralikrishna P, Milton APA, Kadwalia A, Vengatachalam M and Priyadharshini R. 2020. Occurrence of thermophilic *Campylobacter* spp. in freeranging chickens. Journal of Entomology and Zoology Studies. 8(2): 534-537.
- Wada Y, Abdul-Rahman Z. Human 2022. Campylobacteriosis in Southeast Asia: A Meta-Analysis and Systematic Review. International Journal of Infectious Diseases. 116: 75.
- Wagenaar JA, French NP, Havelaar AH. 2013. Preventing *Campylobacter* at the source: why is it so difficult?. Clinical infectious diseases. 57(11): 1600-6.
- Waghamare RN, Paturkar AM, Zende RJ, Vaidya VM, Gandage RS, Aswar NB, Khilari RS. 2017. Studies on occurrence of invasive *Samonella* spp. from unorganised poultry farm to retail chicken meat shops in Mumbai city, India. International Journal of Current Microbiology and Applied Sciences. 6(5): 630-41.
- Wai SS, Saleha AA, Zunita Z, Hassan L, Jalila A. 2012. Occurrence of Co-Infection of Helicobacter pullorum and *Campylobacter* spp. in Broiler and Village (Indigenous) Chickens. Pakistan Veterinary Journal. 32(4): 503-506.
- Wajid M, Awan AB, Saleemi MK, Weinreich J, Schierack P, Sarwar Y, Ali A. 2019. Multiple drug resistance and virulence profiling of *Samonella enterica* serovars Typhimurium and Enteritidis from poultry farms of Faisalabad, Pakistan. Microbial Drug Resistance. 25(1): 133-42.
- Wardhana DK, Purnama MT, Kean OH, Tyasningsih W. 2019. Detection of *Samonella* on chicken meat using immunomagnetic separation and conventional methods from
traditional market in Surabaya, East Java, Indonesia. The Indian Veterinary Journal. 96(11): 31-3.

- Whiley H, Ross K. 2015. *Samonella* and eggs: from production to plate. International Journal of Environmental Research and Public Health. 12(3): 2543-56.
- Whiley H, Van den Akker B, Giglio S, Bentham R. 2013. The role of environmental reservoirs in human Campylobacteriosis. International Journal of Environmental Research and Public Health. 10(11): 5886-907.
- World Health Organization. 2012. The global view of Campylobacteriosis. [cited 2023 July 15]. Available from: https://apps.who.int/iris/bitstream/handle/10665/80751/9789241564601_eng.pdf?sequ ence=1.
- World Health Organization, 2017. Foodborne Zoonoses. In: Zoonoses and Veterinary Public Health. [cited 2023 June 23]. http://refhub.elsevier.com/S0168-1605(19)30312-5/rf1555
- World health organization. 2018. *Samonella* (Non-typhoidal). [cited 2023 June22]. Available from: https://www.who.int/news-room/fact-sheets/detail/*Samonella*-(non-typhoidal).
- World health organization. 2020. *Campylobacter*. [cited 2023 June 22]. Available from: https://www.who.int/news-room/fact-sheets/detail/*Campylobacter*.
- World health organization. 2022. Food Safety. [cited 2023 June 23]. Available from: https://www.who.int/news-room/fact-sheets/detail/food-safety.
- Yang W, Phongaran D, Prasertsee T, Fang R, Phuektes P, Angkititrakul S. 2018. Molecular epidemiology and antimicrobial resistance of *Samonella* spp. isolated from broilers and pigs at slaughterhouses in Thailand and China. The Thai Journal of Veterinary Medicine. 48(3): 393-401.
- Yasmin S, Nawaz M, Anjum AA, Ashraf K, Ullah N, Mustafa A, Ali MA, Mehmood A. 2019. Antibiotic susceptibility pattern of *Samonellae* isolated from poultry from different Districts of Punjab, Pakistan. Pakistani Veterinary Journal. 40: 98-102.
- Zeng D, Chen Z, Jiang Y, Xue F, Li B. 2016. Advances and challenges in viability detection of foodborne pathogens. Frontiers in Microbiology. 7: 1833.

Zwe YH, Tang VC, Aung KT, Gutiérrez RA, Ng LC, Yuk HG. 2018. Prevalence, sequence types, antibiotic resistance and, gyrA mutations of *Samonella* isolated from retail fresh chicken meat in Singapore. Food Control. 90: 233-40.

Appendices

Appendix A. Summary table for the selected *Campylobacter* studies conducted in south and southeast Asia from 2000 to 2020 in chickens and chicken eggs

SN	Reference	SD	Co	SP	Po		n		ST	S	HS	РТ	L	SA	DM	Q			
						Sam	Fa	RO	Re	LBM	SS								
1	Anonymous, 2009	CS	TH	NM	N	91/140, 65% (57.1% to 72.9%)	7/7, 100% (100% to 100%)					CC	Fa	СН	EB	NM	NM	C+B	2
2	Arshad et al., 2019	CS	PAK	NM	N	24/48, 50% (35.9% to 64.1%)			11/16, 68.7% (46% to 91.5%)			СМ	Re	NM	NM	D	Pr	C+B	2
3	Aung et al., 2018	CS	SIN	2010 to 2013	N	0/136, 0% (- 0.1% to 0.1%)			0/61, 0% (- 0.1% to 0.1%)			СМ	Re	NM	NM	MP	Con	C+B	2

SD= Study design, CS= Cross-sectional,

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

4	Bandekar et al., 2005	CS	IND	NM	N	38/40, 95% (88.2% to 101.8%)				RM	RO	NM	NM	MP	NM	C+B	2
5	Bao et al., 2006	CS	V	2004 to 2005	N	112/319, 35.1% (29.9% to 40.3%)				Car	SH	NM	NM	MP	Con	C+B	2
6	Begum et al., 2015	CS	IND	NM	N	27/38, 71.1% (56.6% to 85.5%)				CS	NK	NM	NM	SP	NM	C+B +P	2
7	Bodhidatta et al., 2013	CS	TH	2002 to 2003	N	32/40, 80% (67.6% to 92.4%)				RM	LBM	NM	NM	D	NM	C+B	2
8	Chattopadhyay et al., 2003	CS	IND	NM	N	48/100, 48% (38.2% to 57.8%)				CC	LBM	NM	NM	SP	NM	C+B	2
9	Chokboonmong kol et al., 2013	CS	TH	2010 to 2011	Y		11/98, 11.2% (5% to 17.5%)			CC	SH	NM	EB	SP	Pr	C+B +P	1

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

10	Chokboonmong kol et al., 2013	CS	TH	2011 to 2011	Y		50/98, 51% (41.1% to 60.9%)			Sk	SH	NM	EB	SP	Pr	C+B +P	1
11	Ejaz et al., 2004	CS	РАК	NM	N	581/1000, 58.1% (55% to 61.2%)	20/20, 100% (100% to 100%)			CS	Fa	СН	EB	D	Pr	C+B	2
12	Garin et al., 2012	CS	V	2005 to 2006	N	23/150, 15.3% (9.6% to 21.1%)				Sk	SH	NM	EB	SP	Pr	C+B	2
13	Geetha, 2013	CS	IND	2010	N	28/110, 25.5% (17.3% to 33.6%)				RM	SH	СН	EB	D	NM	C+B +P	2
14	Dao et al., 2006	CS	V	NM	N	17/60, 28.3% (16.9% to 39.7%)				СМ	Re	NM	NM	SP	Con	C+B	2
15	Hasan et al., 2020	CS	BD	2019	Y		30/75, 40% (28.9%			CS	Fa	CH	EB	MP	Pr	C+B +P	1

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

					1	1		1		1	1			-				1
							to											
16	Hasan et al., 2020	CS	BD	2019	Y		4/9, 44.4% (12% to 76.9%)				CS	Fa	СН	Coc	MP	Pr	C+B +P	1
17	Huong et al., 2006	CS	V	2005	N	31/100, 31% (21.9% to 40.1%)					RM	RO	NM	EB	D	Pr	C+B	2
18	Hussain et al., 2007	CS	PAK	2002 to 2004	N	236/492, 48% (43.6% to 52.4%)					RM	Re	NM	EB	MP	Pr	C+B	2
19	Ibrahim et al., 2018	CS	MY	NM	N	28/140, 20% (13.4% to 26.6%)					RM	LBM	NM	EB	SP	Pr	C+B +P	1
20	Kabir et al., 2019	CS	BD	2013	N	25/36, 69.4% (54.4% to 84.5%)					RM	LBM	NM	NM	D	NM	C+B	2
21	Kabir et al., 2019	CS	BD	2013	N	7/14, 50% (23.8% to 76.2%)					Sk	LBM	NM	NM	D	NM	C+B	2
22	Kalupahana et al., 2018	CS	SL	2009 to 2011	Y		346/542, 63.8% (59.8%				CC	SH	NM	EB	MP	Pr	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

			1		1	1	1	1	1	1			-	1	1	1	
							to 67.9%)										
23	Kalupahana et al., 2009	CS	SL	NM	Y		42/59, 71.2% (59.6% to 82.7%)			М	М	NM	EB	SP	NM	C+B	2
24	Khan et al., 2018	CS	IND	2014 to 2015	N	36/150, 24% (17.2% to 30.8%)				CC	RO	NM	NM	D	NM	C+B +P	2
25	Khan et al., 2019	CS	IND	2014 to 2015	N	58/150, 38.7% (30.9% to 46.5%)				RM	RO	NM	NM	D	NM	C+B +P	2
26	Khan et al., 2020	CS	IND	2014 to 2015	Y	4/50, 8% (0.5% to 15.5%)				Fea	RO	NM	NM	D	NM	C+B +P	2
27	Kottawatta et al., 2017	CS	SL	2006 to 2007	Y		28/102, 27.5% (18.8% to 36.1%)			Sk	SH	NM	EB	NM	NM	C+B +P	2
28	Kottawatta et al., 2018	CS	SL	2006 to 2007	Y		12/25, 48% (28.4%			Sk	LBM	NM	EB	NM	NM	C+B +P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

						1					1		-				•
							to 67.6%)										
29	Kottawatta et al., 2019	CS	SL	2006 to 2007	N	22/37, 59.5% (43.6% to 75.3%)		22/37, 59.46% (43.6% to		RM	RO	NM	EB	NM	NM	C+B +P	2
30	Kumar et al., 2015	CS	IND	NM	N	46/100, 46% (36.2% to 55.8%)		73.370)		RM	NM	NM	EB	D	NM	C+P	2
31	Lay et al., 2011	CS	CAM	2006 to 2007	N	123/152, 80.9% (74.7% to 87.2%)				Sk	LBM	NM	NM	D	Con	C+B	2
32	Malik et al., 2014	CS	IND	NM	N	32/100, 32% (22.9% to 41.1%)				CC	М	NM	EB	D	NM	C+B +P	2
33	Mani et al., 2018	CS	IND	NM	N	16/210, 7.6% (4% to 11.2%)				CC	NK	NM	NM	SP	NM	C+B +P	2
34	Mani et al., 2019	CS	IND	NM	N	4/111, 3.6% (0.1% to 7.1%)				RM	NK	NM	NM	SP	NM	C+B +P	2
35	Mansourinajand et al., 2012	CS	MY	NM	N	34/87, 39.1%				CS	LBM	СН	EB	SP	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

						(28.8% to 49.3%)										
36	Mansourinajand et al., 2012	CS	MY	NM	N	53/87, 60.9% (50.7% to 71.2%)			CC	LBM	СН	EB	SP	NM	C+B	2
37	Islam et al., 2018	CS	BD	NM	N	15/20, 75% (56% to 94%)		15/20, 75% (56% to 94%)	RM	LBM	СН	EB	MP	Pr	C+B +P	1
38	Mohamed- Yousif et al., 2019	CS	MY	NM	N	61/101, 60.4% (50.9% to 69.9%)			CS	Fa	NM	EB	SP	NM	C+B +P	2
39	Monika et al., 2016	CS	IND	NM	N	34/251, 13.5% (9.3% to 17.8%)			RM	NK	NM	NM	SP	NM	C+B +P	2
40	Neogi et al., 2020	CS	BD	2015 to 2016	N	21/49, 42.9% (29% to 56.7%)			CS	Fa	СН	EB	MP	NM	C+B +P	2
41	Neogi et al., 2020	CS	BD	2015 to 2016	N	8/28, 28.6% (11.8% to 45.3%)			RM	Fa	СН	EB	MP	NM	C+B +P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

42	Neogi et al., 2020	CS	BD	2015 to 2016	N	14/27, 51.9% (33% to 70.7%)			RM	LBM	СН	EB	MP	NM	C+B +P	2
43	Neogi et al., 2020	CS	BD	2015 to 2016	N	0/33, 0% (- 0.1% to 0.1%)			Mec	Н	СН	EB	MP	NM	C+B +P	2
44	Nisar et al., 2017	CS	PAK	2014 to 2015	N	58/200, 29% (22.7% to 35.3%)			RM	SS	СН	EB	D	NM	C+B +P	2
45	Osbjer et al., 2016	CS	CAM	2011 to 2013	N	198/353, 56.1% (50.9% to 61.3%)			CS	НН	СН	Ι	MP	Con	C+B +P	2
46	Osiriphun et al., 2011	CS	TH	NM	N	123/240, 51.3% (44.9% to 57.6%)			Car	SH	СН	EB	SP	Pr	C+B	2
47	Lim et al., 2017	CS	РН	NM	N	18/41, 43.9% (28.7% to 59.1%)			RM	М	NM	EB	SP	NM	C+B	2
48	Lim et al., 2017	CS	РН	NM	N	31/41, 75.6% (62.5% to 88.8%)			CC	М	NM	EB	SP	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

	49	Lim et al., 2017	CS	PH	NM	N	36/42, 85.7%			In	М	NM	EB	SP	NM	C+B	2
							(75.1% to 96.3%)										
	50	Lim et al., 2017	CS	РН	NM	N	17/19, 89.5% (75.7% to 103.3%)			Gi	М	NM	EB	SP	NM	C+B	2
	51	Lim et al., 2017	CS	PH	NM	N	37/38, 97.4% (92.3% to 102.5%)			Li	М	NM	EB	SP	NM	C+B	2
Ē	52	Lim et al., 2017	CS	PH	NM	N	37/42, 88.1% (78.3% to 97.9%)			Sk	M	NM	EB	SP	NM	C+B	2
	53	Lim et al., 2017	CS	РН	NM	N	31/42, 73.8% (60.5% to 87.1%)			RM	М	NM	EB	SP	NM	C+B	2
	54	Padungtod et al., 2005	CS	TH	2002 to 2003	N	265/534, 49.6% (45.4% to 53.9%)			CS	Fa	СН	EB	MP	Con	C+B +P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

55	Padungtod et al., 2005	CS	TH	2002 to 2003	N	26/73, 35.6% (24.6% to 46.6%)				CS	SH	СН	EB	MP	Con	C+B +P	2
56	Padungtod et al., 2005	CS	TH	2002 to 2003	N	28/72, 38.9% (27.6% to 50.1%)				RM	LBM	СН	EB	MP	Con	C+B +P	2
57	Prachantasena et al., 2017	CS	TH	2012 to 2014	Y		252/442, 57% (52.4% to 61.6%)			CC	Fa	СН	EB	MP	NM	C+B +P	2
58	Prachantasena et al., 2017	CS	TH	2012 to 2014	N	89/138, 64.5% (56.5% to 72.5%)				CS	Fa	СН	BB	MP	NM	C+B +P	2
59	Prachantasena et al., 2017	CS	TH	2013 to 2014	N	0/36, 0% (0.0% to 0.0%)				ES	Н	СН	Н	MP	NM	C+B +P	3
60	Prachantasena et al., 2017	CS	TH	2012 to 2014	N	250/1010, 24.8% (22.1% to 27.4%)				CS	Fa	СН	EB	MP	NM	C+B +P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

61	Prachantasena et al., 2017	CS	TH	2012 to 2014	N	172/268, 64.2% (58.4% to 69.9%)			CS	SH	СН	EB	MP	NM	C+B +P	2
62	Raja et al., 2018	CS	IND	NM	N	0/36, 0% (- 0.1% to 0.1%)			RM	RO	СН	EB	D	NM	Р	2
63	Rajkumar, 2010	CS	IND	NM	N	42/300, 14% (10.1% to 17.9%)			Sk	SH	СН	NM	D	NM	C+B	2
64	Rawat et al., 2018	CS	IND	NM	N	18/116, 15.5% (8.9% to 22.1%)			CC	NK	СН	EB	D	Pr	C+B +P	2
65	Reddy et al., 2019	CS	TH	NM	N	38/135, 28.1% (20.6% to 35.7%)			Sk	SH	СН	EB	D	NM	C+B	2
66	Reddy et al., 2019	CS	TH	NM	N	61/135, 45.2% (36.8% to 53.6%)			In	SH	СН	EB	D	NM	C+B	2
67	Reddy et al., 2019	CS	TH	NM	N	27/120, 22.5% (15% to 30%)			RM	RO	СН	EB	D	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

68	Rejab et al., 2012	CS	MY	2008 to 2009	N	28/30, 93.3% (84.4% to 102.3%)			Sk	LBM	СН	EB	MP	NM	C+B	2
69	Rejab et al., 2012	CS	MY	2008 to 2009	N	131/216, 60.6% (54.1% to 67.2%)			Sk	SH	СН	EB	MP	NM	C+B	2
70	Rizal et al., 2016	CS	IND	NM	N	60/250, 24% (18.7% to 29.3%)			In	SH	СН	EB	MP	NM	C+B	2
71	Parkar et al., 2013	CS	IND	2008 to 2009	N	143/240, 59.6% (53.4% to 65.8%)			CC	SH	NM	EB	SP	Pr	C+B	2
72	Parkar et al., 2013	CS	IND	2008 to 2009	N	137/240, 57.1% (50.8% to 63.3%)			Car	SH	NM	EB	SP	Pr	C+B	2
73	Saiyudthong et al., 2015	CS	TH	2013 to 2014	N	83/122, 68% (59.8% to 76.3%)			М	SS	NM	EB	SP	NM	C+B +P	2
74	Saiyudthong et al., 2015	CS	TH	2013 to 2014	N	97/108, 89.8%			М	LBM	NM	EB	SP	NM	C+B +P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

						(84.1% to										
75	Samad et al., 2018	CS	РАК	2016	N	$\begin{array}{c} 33.5 \\ 32/100, 32\% \\ (22.9\% \text{ to} \\ 41.1\%) \end{array}$			PM	LBM	СН	EB	SP	NM	C+B +P	2
76	Samad et al., 2018	CS	PAK	2016	N	48/100, 48% (38.2% to 57.8%)			RM	LBM	СН	EB	SP	NM	C+B +P	2
77	Rahul et al., 2016	CS	IND	2014 to 2016	N	43/370, 11.6% (8.4% to 14.9%)			CS	Fa	СН	EB	SP	NM	C+B	2
78	Sharma et al., 2016	CS	IND	NM	N	72/100, 72% (63.2% to 80.8%)			RM	LBM	СН	EB	SP	NM	C+B	2
79	Siddiqui et al., 2015	CS	PAK	2011 to 2012	N	31/88, 35.2% (25.2% to 45.2%)			CS	SH	СН	EB	NM	NM	C+P	2
80	Singh et al., 2009	CS	IND	NM	N	5/35, 14.3% (2.7% to 25.9%)			RM	М	СН	EB	SP	NM	C+B	2
81	Singh et al., 2009	CS	IND	NM	N	6/51, 11.8% (2.9% to 20.6%)			Car	М	СН	EB	SP	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

82	Sinulingga et al., 2019	CS	MY	NM	N	107/210, 51% (44.2% to 57.7%)	6/7, 85.7% (59.8% to 111.6%)				CS	Fa	СН	EB	SP	Pr	C+B +P	1
83	Sinulingga et al., 2019	CS	MY	NM	N	12/85, 14.1% (6.7% to 21.5%)			11/11, 100% (100% to 100%)		RM	LBM	СН	EB	SP	Pr	C+B +P	1
84	Sinulingga et al., 2019	CS	MY	NM	N	17/25, 68% (49.7% to 86.3%)				5/5, 100%(1 00% to 100%)	RM	SS	СН	EB	SP	Pr	C+B +P	1
85	Sison et al., 2014	CS	РН	2013	N	57/120, 47.5% (38.6% to 56.4%)					RM	LBM	СН	EB	SP	Pr	C+B	1
86	Upadhyay et al., 2016	CS	IND	NM	N	34/251, 13.5% (9.3% to 17.8%)					RM	NK	NM	EB	SP	NM	C+B	2
87	Vaishnavi et al., 2014	CS	IND	NM	Ν	57/127, 44.9%					In	Fa	NM	EB	SP	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

	-					-										
						(36.2% to 53.5%)										
88	Vindigni et al., 2007	CS	TH	2003	N	10/27, 37% (18.8% to			RM	LBM	СН	EB	SP	Con	C+B	2
89	Vindigni et al., 2007	CS	TH	2003	N	53.5%) 16/23, 69.6% (50.8% to 88.4%)			RM	SS	СН	EB	SP	Con	C+B	2
90	Vivekanandhan et al., 2020	CS	IND	NM	N	3/54, 5.6% (-0.6% to 11.7%)			CC	НН	СН	Ι	D	Pr	C+P	2
91	Wai et al., 2012	CS	РАК	2010	N	52/57, 91.2% (83.9% to 98.6%)			CC	LBM	СН	EB	D	Pr	C+B	2
92	Wai et al., 2012	CS	РАК	2010	N	23/32, 71.9% (56.3% to 87.5%)			CC	LBM	СН	Ι	D	Pr	C+B	2
93	Kulasooriya et al., 2019	CS	IND	2014	N	8/51, 15.7% (5.7% to 25.7%)			RM	М	NM	NM	D	Pr	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

94	Kulasooriya et al., 2019	CS	IND	2014	Ν	1/23, 4.3% (-4% to 12.7%)			СМ	М	NM	NM	D	Pr	C+B	2
95	Nayak et al.,	CS	IND	NM	Ν	18/60, 30%			Li	RO	NM	NM	SP	NM	C+B	2
	2005					(18.4% to									+P	
						41.6%)										

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

CN	Deferrer	CD	C.	CD	D.	Sampling unit n/N, % (95% CI)				CT	G	DT	IIC		G A	MG	
SIN	Keterence	50	Co	SP	PO	Sam	Fa	LBM	SS	51	5	PI	нз	L	SA	MC	Q
1	Akbar and Anal, 2015	CS	PAK	NM	N	1/181, 0.6% (-0.5% to 1.6%)				RTE	SS	NM	NM	NM	NM	C+B+P	2
2	Sinwat et al., 2015	CS	TH	2010 to 2013	N	80/221, 36.2% (29.9% to 42.5%)				RM	SH	EB	NM	MP	NM	C+B+P	2
3	Thung et al., 2016	CS	MY	2014	N	16/60, 26.7% (15.5% to 37.9%)				RM	LBM	NM	NM	D	Pr	C+B+P+Se	2
4	Thung et al., 2016	CS	MY	2014	N	9/60, 15% (6% to 24%)				RM	SS	NM	NM	D	Pr	C+B+P+Se	2
5	Niyomdecha et al., 2016	CS	TH	2015	N	25/40, 62.5% (47.5% to 77.5%)				RM	RO	NM	NM	MP	Pr	C+B	2
6	Trongjit et al., 2017	CS	TH	2014 to 2015	N	10/90, 11.1% (4.6% to 17.6%)				RM	SH	NM	NM	SP	NM	C+B+P	2
7	Trongjit et al., 2017	CS	TH	2014 to 2015	N	1/84, 1.2% (-1.1% to 3.5%)				Car	SH	NM	NM	SP	NM	C+B+P	2
8	Trongjit et al., 2017	CS	TH	2014 to 2015	N	69/105, 65.7% (56.6% to 74.8%)				Car	LBM	NM	NM	SP	NM	C+B+P	2

Appendix B. Summary table for the selected non-typhoidal *Salmonella* (NTS) conducted in south and southeast Asia from 2000 to 2020 in chicken and chicken eggs

SD= Study design, CS= Cross-sectional,

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

9	Trongjit et al.,	CS	CAM	2014 to	Ν	6/100, 6% (1.4% to		RM	SH	NM	NM	SP	NM	C+B+P	2
10	Trongjit et al., 2017	CS	CAM	2015 2014 to 2015	N	10.7%) 72/87, 82.8% (74.8% to 90.7%)		Car	LBM	NM	NM	SP	NM	C+B+P	2
11	Kaluaphana et al., 2016	CS	SL	NM	Y	12/100, 12% (5.6% to 18.4%)		ES	RO	NA	NA	D	Pr	C+B	2
12	Kaluaphana et al., 2016	CS	SL	NM	Y	3/100, 3% (-0.3% to 6.3%)		EC	RO	NA	NA	D	Pr	C+B	2
13	Moe et al., 2017	CS	MM	2014 to 2015	N	138/141, 97.9% (95.5% to 100.3%)	138/141, 97.9% (93.9% to 99.6%)	RM	RO	NM	NM	D	SPr	C+B+Se	2
14	Abatcha et al., 2018	CS	MY	2015 to 2016	N	17/35, 48.6% (32% to 65.1%)		Car	LBM	NM	NM	MP	NM	C+B	2
15	Aditya, 2015	CS	BD	2014	N	16/50, 32% (19.1% to 44.9%)		RM	LBM	EB	СН	SP	NM	C+B+P	2
16	Akbar et al., 2013	CS	TH	NM	N	11/210, 5.2% (2.2% to 8.3%)		RM	LBM	NM	NM	SP	Pr	C+B	2
17	Akhtar et al., 2009	CS	PAK	NM	N	48/120, 40% (31.2% to 48.8%)		ES	NM	NA	NA	D	NM	C+B	2
18	Akhtar et al., 2009	CS	PAK	NM	N	10/120, 8.3% (3.4% to 13.3%)		EC	NM	NA	NA	D	NM	C+B	2
19	Akhtar et al., 2009	CS	PAK	NM	N	55/85, 64.7% (54.6% to 74.9%)		RM	NM	NM	NM	D	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

20	Alam et al.,	CS	BD	2017	Ν	24/50, 48% (34.2% to		Cl	Fa	NM	NM	SP	Pr	C+B+P	1
	2020					61.9%)									
21	Ananchaipatta	CS	TH	2013 to	Ν	1/30, 3.3% (-3.1% to		СМ	Re	NM	NM	MP	Pr	C+B	2
	na et al., 2016			2015		9.8%)									
22	Ananchaipatta	CS	TH	2013 to	Ν	0/15, 0% (0% to 0%)		RTE	SS	NM	NM	MP	Pr	C+B	2
	na et al., 2016			2015											
23	Angkititrakul	CS	TH	2003	Ν	30/40, 75% (61.6% to		RM	RO	NM	NM	SP	NM	C+B+Se	2
	et al., 2005					88.4%)									
24	Anukampa et	CS	IND	2014 to	Ν	12/47, 25.5% (13.1%		RM	Re	NM	NM	MP	Con	C+B+P	2
	al., 2017			2016		to 38%)									
25	Anukampa et	CS	IND	2014 to	Ν	1/6, 16.7% (-13.2% to		СМ	Re	NM	NM	MP	Con	C+B+P	2
	al., 2018			2016		46.5%)									
26	Anukampa et	CS	IND	2014 to	Ν	1/6, 16.7% (-13.2% to		PM	Re	NM	NM	MP	Con	C+B+P	2
	al., 2019			2016		46.5%)									
27	Anukampa et	CS	IND	2014 to	Ν	1/18, 5.6% (-5% to		BE	Re	NA	NA	MP	Con	C+B+P	2
	al., 2020			2016		16.1%)									
28	Anukampa et	CS	IND	2014 to	Ν	1/18, 5.6% (-5% to		Е	Re	NA	NA	MP	Con	C+B+P	2
	al., 2021			2016		16.1%)									
29	Arora et al.,	CS	IND	2011 to	Y		253/309	М	Lab	EB	Sick	SP	Pur	C+B+Se	2
	2015			2013			, 81.9%								
							(77.1%								
							to 86%)								
30	Asif et al.,	CS	PAK	2014 to	Ν	4/30, 13.3% (1.2% to		Hr	RO	EB	NM	D	SPr	C+B+P	2
	2017			2015		25.5%)									

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

31	Asif et al.,	CS	PAK	2014 to	Ν	6/30, 20% (5.7% to		K	RO	EB	NM	D	SPr	C+B+P	2
	2017			2015		34.3%)									
32	Asif et al.,	CS	PAK	2014 to	Ν	8/30, 26.7% (10.8% to		Li	RO	EB	NM	D	SPr	C+B+P	2
	2017			2015		42.5%)									
33	Asif et al.,	CS	PAK	2014 to	Ν	17/60, 28.3% (16.9%		RM	RO	EB	NM	D	SPr	C+B+P	2
	2017			2015		to 39.7%)									
34	Aung et al.,	CS	SIN	2010 to	Ν	2/136, 1.5% (-0.6% to		СМ	Re	NM	NM	MP	Con	C+B+Se	2
	2018			2013		3.5%)									
35	Mat Zin et al	CS	MY	2014	Ν	5/55, 9.1% (1.5% to		СМ	Re	NM	NM	SP	NM	C+B	2
	2017					16.7%)									
36	Badhe et al.,	CS	IND	NM	Ν	141/210, 67.1%		RM	RO	NM	NM	SP	NM	C+B	2
	2013					(60.8% to 73.5%)									
37	Badhe et al.,	CS	IND	NM	Ν	23/70, 32.9% (21.9%		RM	SH	NM	NM	SP	NM	C+B	2
	2013					to 43.9%)									
38	Bangtrakulno	CS	TH	2004 to	Ν	39/50, 78% (66.5% to		RM	М	NM	NM	SP	NM	C+B	2
	nth et al			2005		89.5%)									
	2006					,									
39	Bantawa et	CS	NP	2017	Ν	9/15, 60% (35.2% to		RM	RO	NM	NM	D	NM	C+B	2
	al., 2018					84.8%)									
40	Biswas et al,	CS	BD	2002 to	Ν	87/1227, 7.1% (5.7%		М	HH	HB	Dea	MP	PPr	C+B	2
	2005			2003		to 8.5%)					d				
41	Biswas et al.,	CS	BD	2003 to	Ν	21/349, 6% (3.5% to		М	HH	Son	Dea	MP	PPr	C+B	2
	2006			2004		8.5%)					d				
42	Bodhidatta et	CS	TH	2002 to	Ν	37/40, 92.5% (84.3%		RM	RO	NM	NM	SP	NM	C+B	2
	al., 2013			2003		to 100.7%)									
	 31 32 33 34 35 36 37 38 39 40 41 42 	31 Asif et al., 2017 32 Asif et al., 2017 33 Asif et al., 2017 34 Aung et al., 2018 35 Mat Zin et al., 2017 36 Badhe et al., 2013 37 Badhe et al., 2013 38 Bangtrakulno nth et al., 2006 39 Bantawa et al., 2018 40 Biswas et al, 2005 41 Biswas et al., 2013	31Asif et al., 2017CS 201732Asif et al., 2017CS 201733Asif et al., 2017CS 201734Aung et al., 2018CS 201835Mat Zin et al., 2017CS 201736Badhe et al., 2013CS 201337Badhe et al., 2013CS 201338Bangtrakulno nth et al., 2006CS 200539Bantawa et al., 2018CS 200540Biswas et al, 2005CS 200541Biswas et al., 2006CS 200542Bodhidatta et al., 2013CS CS	31Asif et al., 2017CSPAK 201732Asif et al., 2017CSPAK 201733Asif et al., 2017CSPAK 201734Aung et al., 2018CSSIN 201835Mat Zin et al., 2017CSMY 201736Badhe et al., 2013CSIND 201337Badhe et al., 2013CSIND 201338Bangtrakulno nth et al., 2006CSTH nth et al., 200639Bantawa et al., 2018CSBD 200540Biswas et al., 2005CSBD 200641Biswas et al., 2006CSTH al., 2013	31 Asif et al., 2017 CS PAK 2014 to 2015 32 Asif et al., 2017 CS PAK 2014 to 2015 33 Asif et al., 2017 CS PAK 2014 to 2015 34 Aung et al., 2018 CS SIN 2010 to 2013 35 Mat Zin et al., 2017 CS MY 2014 36 Badhe et al., 2013 CS IND NM 37 Badhe et al., 2013 CS IND NM 38 Bangtrakulno nth et al., 2006 CS TH 2004 to 2005 39 Bantawa et al., 2018 CS BD 2002 to 2003 40 Biswas et al., 2005 CS BD 2002 to 2003 41 Biswas et al., 2006 CS TH 2002 to 2003 42 Bodhidatta et al., 2013 CS TH 2002 to 2003	31 Asif et al., 2017 CS PAK 2014 to 2015 N 32 Asif et al., 2017 CS PAK 2014 to 2015 N 33 Asif et al., 2017 CS PAK 2014 to 2015 N 34 Aung et al., 2018 CS SIN 2010 to 2013 N 35 Mat Zin et al., 2017 CS MY 2014 N 36 Badhe et al., 2013 CS IND NM N 37 Badhe et al., 2013 CS IND NM N 38 Bangtrakulno nth et al., 2006 CS TH 2004 to 2005 N 40 Biswas et al, 2005 CS BD 2002 to 2003 N 41 Biswas et al., 2006 CS TH 2003 to 2004 N 42 Bodhidatta et al., 2013 CS TH 2002 to 2003 N	31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) 33 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) 34 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) 34 Aung et al., 2018 CS SIN 2010 to 2013 N 2/136, 1.5% (-0.6% to 3.5%) 35 Mat Zin et al., 2017 CS MY 2014 N 5/55, 9.1% (1.5% to 16.7%) 36 Badhe et al., 2013 CS IND NM N 141/210, 67.1% (60.8% to 73.5%) 37 Badhe et al., 2013 CS IND NM N 23/70, 32.9% (21.9% to 43.9%) 38 Bangtrakulno nth et al., 2006 CS TH 2004 to 2005 N 39/50, 78% (66.5% to 84.8%) 40 Biswas et al., 2018 CS NP 2017 N 8/7/1227, 7.1% (5.7% to 85.5%) 41 Biswas et al., 2006 CS BD </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 2015 Li RO EB NM 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM 34 Aung et al., 2018 CS SIN 2010 to 2013 N 17/60, 28.3% (16.9% to 39.7%) CM Re NM NM 35 Mat Zin et al., 2018 CS SIN 2010 to 2013 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM 2017 CS MY 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM 2013 CS IND NM N 141/210, 67.1% (60.8% to 73.5%) RM RM RM NM NM 37 Badhe et al., 2013 CS<!--</td--><td>31 Asif et al., 2017 CS PAK 2015 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) N K RO EB NM D 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 20.7% (10.8% to 42.5%) Li RO EB NM D 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM D 34 Aung et al., 2018 CS SIN 2010 to 2013 N 5/55, 9.1% (0.6% to 3.5%) CM Re NM NM MP 35 Mat Zin et al., 2013 CS MY 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP 36 Badhe et al., 2013 CS IND NM N 141/210, 67.1% (60.8% to 73.5%) RM RO NM NM SP 37 Badhe et al., 2013 CS IND NM N 237/0, 32.9% (21.9% (to 33.9%) RM RM NM NM SP 38 Ba</td><td>31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM D SPr 34 Aung et al., 2018 CS SIN 2010 to 2013 N 2755, 9.1% (1.5% to 16.7%) CM Re NM NM MP Con 35 Mat Zin et al., 2013 CS MY 2014 N 5755, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM 36 Badhe et al., 2013 CS MY 2014 N 5755, 9.1% (1.5% to 16.7%) RM RM RM NM NM SP NM 37 Badhe et al., 2013 CS IND NM N 23/70, 32.9% (21.9%) RM RM <td< td=""><td>31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr C+B+P 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr C+B+P 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% 0.39.7%) RM RO EB NM D SPr C+B+P 34 Aung et al., 2017 CS SIN 2010 to 2013 N 2/156, 1.5% (-0.6% to 3.9.7%) RM RO Re NM NM MP Con C+B+Se 35 Mat Zin et al., 2017 CS SIN 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM C+B 2013 S IAdhe et al., 2013 CS IND NM N 141/210, 67.1% RM RM RM NM NM SP NM C+B 2013 S TH</td></td<></td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 2015 Li RO EB NM 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM 34 Aung et al., 2018 CS SIN 2010 to 2013 N 17/60, 28.3% (16.9% to 39.7%) CM Re NM NM 35 Mat Zin et al., 2018 CS SIN 2010 to 2013 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM 2017 CS MY 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM 2013 CS IND NM N 141/210, 67.1% (60.8% to 73.5%) RM RM RM NM NM 37 Badhe et al., 2013 CS </td <td>31 Asif et al., 2017 CS PAK 2015 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) N K RO EB NM D 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 20.7% (10.8% to 42.5%) Li RO EB NM D 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM D 34 Aung et al., 2018 CS SIN 2010 to 2013 N 5/55, 9.1% (0.6% to 3.5%) CM Re NM NM MP 35 Mat Zin et al., 2013 CS MY 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP 36 Badhe et al., 2013 CS IND NM N 141/210, 67.1% (60.8% to 73.5%) RM RO NM NM SP 37 Badhe et al., 2013 CS IND NM N 237/0, 32.9% (21.9% (to 33.9%) RM RM NM NM SP 38 Ba</td> <td>31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM D SPr 34 Aung et al., 2018 CS SIN 2010 to 2013 N 2755, 9.1% (1.5% to 16.7%) CM Re NM NM MP Con 35 Mat Zin et al., 2013 CS MY 2014 N 5755, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM 36 Badhe et al., 2013 CS MY 2014 N 5755, 9.1% (1.5% to 16.7%) RM RM RM NM NM SP NM 37 Badhe et al., 2013 CS IND NM N 23/70, 32.9% (21.9%) RM RM <td< td=""><td>31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr C+B+P 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr C+B+P 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% 0.39.7%) RM RO EB NM D SPr C+B+P 34 Aung et al., 2017 CS SIN 2010 to 2013 N 2/156, 1.5% (-0.6% to 3.9.7%) RM RO Re NM NM MP Con C+B+Se 35 Mat Zin et al., 2017 CS SIN 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM C+B 2013 S IAdhe et al., 2013 CS IND NM N 141/210, 67.1% RM RM RM NM NM SP NM C+B 2013 S TH</td></td<></td>	31 Asif et al., 2017 CS PAK 2015 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) N K RO EB NM D 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 20.7% (10.8% to 42.5%) Li RO EB NM D 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM D 34 Aung et al., 2018 CS SIN 2010 to 2013 N 5/55, 9.1% (0.6% to 3.5%) CM Re NM NM MP 35 Mat Zin et al., 2013 CS MY 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP 36 Badhe et al., 2013 CS IND NM N 141/210, 67.1% (60.8% to 73.5%) RM RO NM NM SP 37 Badhe et al., 2013 CS IND NM N 237/0, 32.9% (21.9% (to 33.9%) RM RM NM NM SP 38 Ba	31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% to 39.7%) RM RO EB NM D SPr 34 Aung et al., 2018 CS SIN 2010 to 2013 N 2755, 9.1% (1.5% to 16.7%) CM Re NM NM MP Con 35 Mat Zin et al., 2013 CS MY 2014 N 5755, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM 36 Badhe et al., 2013 CS MY 2014 N 5755, 9.1% (1.5% to 16.7%) RM RM RM NM NM SP NM 37 Badhe et al., 2013 CS IND NM N 23/70, 32.9% (21.9%) RM RM <td< td=""><td>31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr C+B+P 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr C+B+P 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% 0.39.7%) RM RO EB NM D SPr C+B+P 34 Aung et al., 2017 CS SIN 2010 to 2013 N 2/156, 1.5% (-0.6% to 3.9.7%) RM RO Re NM NM MP Con C+B+Se 35 Mat Zin et al., 2017 CS SIN 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM C+B 2013 S IAdhe et al., 2013 CS IND NM N 141/210, 67.1% RM RM RM NM NM SP NM C+B 2013 S TH</td></td<>	31 Asif et al., 2017 CS PAK 2014 to 2015 N 6/30, 20% (5.7% to 34.3%) K RO EB NM D SPr C+B+P 32 Asif et al., 2017 CS PAK 2014 to 2015 N 8/30, 26.7% (10.8% to 42.5%) Li RO EB NM D SPr C+B+P 33 Asif et al., 2017 CS PAK 2014 to 2015 N 17/60, 28.3% (16.9% 0.39.7%) RM RO EB NM D SPr C+B+P 34 Aung et al., 2017 CS SIN 2010 to 2013 N 2/156, 1.5% (-0.6% to 3.9.7%) RM RO Re NM NM MP Con C+B+Se 35 Mat Zin et al., 2017 CS SIN 2014 N 5/55, 9.1% (1.5% to 16.7%) CM Re NM NM SP NM C+B 2013 S IAdhe et al., 2013 CS IND NM N 141/210, 67.1% RM RM RM NM NM SP NM C+B 2013 S TH

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

43	Chaisatit et al., 2012	CS	TH	2010 to 2011	N	14/75, 18.7% (9.9% to 27.5%)		RM	SS	NM	NM	SP	SPr	C+B+P	2
44	Chotinun et al., 2014	CS	TH	2011 to 2012	N	6/41, 14.6% (3.8% to 25.5%)		Cl	SH	NM	NM	SP	NM	C+B	2
45	Chotinun et al., 2014	CS	TH	2011 to 2012	N	16/41, 39% (24.1% to 54%)		Car	SH	NM	NM	SP	NM	C+B	2
46	Nguyen et al., 2012	CS	V	2012 to 2015	N	47/72, 65.3% (54.3% to 76.3%)		RM	SH	NM	NM		NM	C+B+P	2
47	Dahal et al., 2008	CS	BH	2006 to 2007	N	52/400, 13% (9.7% to 16.3%)		Car	RO	EB	NM	SP	SPr	C+B	2
48	Das et al., 2012	CS	IND	NM	N	12/32, 37.5% (20.7% to 54.3%)		RM	SH	NM	NM	D	NM	C+B+P	2
49	Das et al., 2012	CS	IND	NM	N	6/25, 24% (7.3% to 40.7%)		E	RO	NA	NA	D	NM	C+B+P	2
50	Kumar et al., 2015	CS	IND	NM	N	7/52, 13.5% (4.2% to 22.7%)		Li	Fa	EL	NM	MP	SPr	C+B+Se	1
51	Kumar et al., 2015	CS	IND	NM	N	3/188, 1.6% (-0.2% to 3.4%)		Cl	Fa	EL	NM	MP	SPr	C+B+Se	1
52	Ellerbroek et al., 2010	CS	V	NM	N	52/400, 13% (9.7% to 16.3%)		Sk	NM	NM	NM	NM	NM	C+B	2
53	Fardows and Shamsuzzama n, 2015	CS	BD	NM	N	4/8, 50% (15.4% to 84.7%)		ES	Fa	NA	NA	D	SPr	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

54	Fardows and Shamsuzzama n, 2015	CS	BD	NM	N	1/8, 12.5% (-10.4% to 35.4%)		EC	C	RO	NA	NA	D	SPr	C+B	2
55	Gautam et al., 2017	CS	IND	NM	N	25/48, 52.1% (38% to 66.2%)		RN	M	SS	NM	NM	D	NM	C+B	2
56	Gautam et al., 2017	CS	IND	NM	N	1/39, 2.6% (-2.4% to 7.5%)		PN	Л	SS	NM	NM	D	NM	C+B	2
57	Geidam et al., 2012	CS	MY	2011	N		1/3, 33.3% (0.8% to 90.6%)	Cl		Fa	NM	NM	D	NM	C+B	2
58	Dao et al., 2006	CS	V	NM	N	5/60, 8.3% (1.3% to 15.3%)		RM	M	Re	NM	NM	SP	NM	C+B	2
59	Hanh et al., 2006	CS	V	2001 to 2004	N	28/907, 3.1% (2% to 4.2%)		М		Fa	Br	NM	MP	SPr	C+B	2
60	Hanh et al., 2006	CS	V	2001 to 2004	N	26/412, 6.3% (4% to 8.7%)		DI	Ŧ	Fa	Br	Dea d	MP	SPr	C+B	2
61	Huong et al., 2006	CS	V	2004 to 2005	N	128/262, 48.9% (42.8% to 54.9%)		RN	M	LBM	NM	NM	SP	Pr	C+B+Se	2
62	Jajere et al., 2019	CS	MY	2016 to 2018	N	17/675, 2.5% (1.3% to 3.7%)		Cl		Fa	NM	NM	MP	NM	C+B	2
63	Jajere et al., 2019	CS	MY	2016 to 2018	N	0/62, 0% (0% to 0%)		E		Fa	NA	NA	MP	NM	C+B	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

64	Kalupahana et al., 2017	CS	SL	NM	Ν	12/15, 80% (59.8% to 100.2%)	ES	RO	NA	NA	D	Pr	C+B+Se	2
65	Kalupahana et al., 2017	CS	SL	NM	N	3/15, 20% (-0.2% to 40.2%)	EC	RO	NA	NA	D	Pr	C+B+Se	2
60	Nagappa et al., 2007	CS	IND	NM	N	1/100, 1% (-1% to 3%)	RM	RO	NM	NM	D	NM	C+B+P	2
67	V Nagappa et al., 2007	CS	IND	NM	N	3/100, 3% (-0.3% to 6.3%)	E	RO	NA	NA	D	NM	C+B+P	2
68	Kaushik et al., 2014	CS	IND	2010 to 2013	N	54/228, 23.7% (18.2% to 29.2%)	RM	RO	NM	NM	D	SPr	C+B+Se+P	2
69	Khan et al., 2015	CS	IND	NM	N	24/140, 17.1% (10.9% to 23.4%)	CC	Fa	EL	NM	D	NM	C+B+Se	2
70	Khan et al., 2015	CS	IND	NM	N	0/60, 0% (0% to 0%)	Cl	Fa	EL	NM	D	NM	C+B+Se	2
71	Khan et al., 2015	CS	IND	NM	N	0/12, 0% (0% to 0%)	RM	Fa	EL	NM	D	NM	C+B+Se	2
72	2 Khan et al., 2015	CS	IND	NM	N	0/20, 0% (0% to 0%)	EC	Fa	NA	NA	D	NM	C+B+Se	2
73	Khan t al., 2019	CS	PAK	NM	N	18/250, 7.2% (4% to 10.4%)	Cl	Fa	NM	СН	MP	NM	C+B+Se+P	2
74	Khan t al., 2019	CS	PAK	NM	N	30/100, 30% (21% to 39%)	In	LBM	NM	СН	MP	NM	C+B+Se+P	2
75	5 Khan t al., 2019	CS	PAK	NM	N	5/100, 5% (0.7% to 9.3%)	Li	LBM	NM	СН	MP	NM	C+B+Se+P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

76	Vhan tal	CC	DAV	NIM	N	$0/100 00/(00/t_{0}00/)$	1 1	V	TDM	NIM		MD		CIDICALD	12
/0	2019	CS	PAK	INIM	IN	0/100, 0% (0% 10 0%)		K	LDM	INIVI	Сп	MP	INIVI	C+D+Se+P	2
77	Khan t al.,	CS	PAK	NM	Ν	25/100, 25% (16.5%		RM	LBM	NM	CH	MP	NM	C+B+Se+P	2
	2019					to 33.5%)									
78	Kit et al.,	CS	MY	NM	Ν	1/27, 3.7% (-3.4% to		Е	LBM	NA	NA	MP	Sys	C+B	2
	2015					10.8%)							Pr		
79	Kit et al.,	CS	MY	NM	Ν	1/27, 3.7% (-3.4% to		Е	LBM	NA	NA	MP	Sys	C+B	2
	2015					10.8%)							Pr		
80	Kumar et al.,	CS	IND	2005 to	Ν	105985/2000000,		NM	Fa	EB	Sick	SP	Pur	C+B	2
	2010			2008		6.6% (6.5% to 6.6%)									
81	Latha et al.,	CS	IND	NM	Ν	0/325, 0% (0% to 0%)		CM	Re	NM	NM	SP	NM	C+B+P	2
	2017														
82	Lay et al.,	CS	CAM	2006 to	Ν	134/152, 88.2% (83%		Car	RO	NM	NM	D	Pr	C+B	2
	2011			2007		to 93.3%)									
83	Maharjan et	CS	NP	2002 to	Ν	8/55, 14.6% (5.2% to		RM	RO	NM	NM	D	NM	C+B+Se	2
	al., 2006			2003		23.9%)									
84	Mahato, 2019	CS	NP	2017 to	Ν	17/40, 42.5% (27.2%		RM	RO	NM	NM	D	Pr	C+B	2
				2018		to 57.8%)									
85	Mahmud et	CS	BD	2009 to	Y	71/416, 17.1% (13.5%		Cl	Fa	NM	CH	D	NM	C+B+Agao	2
	al., 2011			2010		to 20.7%)								se	
86	Mahmud et	CS	BD	2009 to	Y	35/87, 40.2% (29.9%		М	Fa	NM	Dea	D	NM	C+B+Agao	2
	al., 2011			2010		to 50.5%)					d			se	
87	Mallhi et al.,	CS	PAK	2017	Ν	4/30, 13.3% (1.2% to		RM	RO	NM	NM	D	NM	C+B	2
	2019					25.5%)									

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

88	Manguiat et	CS	PH	2010 to	Ν	21/69, 30.4% (19.6%	CM	Re	NM	NM	SP	NM	C+B+P	2
	al., 2013			2011		to 41.3%)								
89	Maripandi et	CS	IND	2003 to	Ν	92/578, 15.9% (12.9%	RM	RO	NM	NM	D	NM	C+B	2
	al., 2010			2005		to 18.9%)								
90	Mathew et al.,	CS	TH	NM	Ν	53/427, 12.4% (9.3%	Cl	Fa	EB	NM	NM	NM	C+B+P	2
	2009					to 15.5%)								
91	Menghistu et	CS	IND	2008 to	Ν	6/220, 2.7% (0.6% to	М	Lab	NM	Dea	D	Pr	C+B+P	2
	al., 2011			2009		4.9%)				d				
92	Menghistu et	CS	IND	2008 to	Ν	1/40, 2.5% (-2.3% to	E	RO	NA	NA	D	Pr	C+B+P	2
	al., 2011			2009		7.3%)								
93	Minami et al.,	CS	TH	2006 to	Ν	4/7, 57.1% (20.5% to	RM	SS	NM	NM	MP	Con	C+B+P+Se	2
	2010			2007		93.8%)								
94	Minami et al.,	CS	TH	2006 to	Ν	13/27, 48.2% (29.3%	RM	RO	NM	NM	MP	Con	C+B+P+Se	2
	2010			2007		to 67%)								
95	Mir et al.,	CS	IND	2007 to	Ν	23/51, 45.1% (31.4%	In	Fa	NM	Dea	SP	NM	C+B+Se+P	2
	2010			2008		to 58.8%)				d			FGE	
96	Mir et al.,	CS	IND	2013 to	Ν	18/202, 8.9% (5% to	CC	SH	NM	NM	SP	NM	C+B+P+Se	2
	2015			2014		12.8%)								
97	Mridha et al.,	CS	BD	2017	Ν	59/128, 46.1% (37.5%	Cl	Fa	EB	NM	MP	Con	C+B+P+Se	2
	2020					to 54.7%)								
98	Murugkar et	CS	IND	2003 to	Ν	34/231, 14.7% (10.2%	Cl	Fa	NM	Sick	MP	Pur	C+B+Se	2
	al., 2005			2004		to 19.3%)								
99	Naik et al.,	CS	IND	2013 to	Ν	7/200, 3.5% (1% to	RM	RO	NM	NM	SP	NM	C+B+P	2
	2015			2014		6.1%)								

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

100	Neunchat et al., 2017	CS	TH	2015	Ν	54/123, 43.9% (35.1% to 52.7%)			RM	RO	NM	NM	SP	NM	C+B+Se	2
101	Neunchat et al., 2017	CS	TH	2015	N	9/404, 2.2% (0.8% to 3.7%)			ES	RO	NA	NA	SP	NM	C+B+Se	2
102	Nghiem et al.,2019	CS	V	NM	N	11/30, 36.7% (19.4% to 53.9%)			RM	LBM	NM	NM	SP	NM	C+B+P	2
103	Nhung et al., 2018	CS	V	2016 to 2017	N		18/ 90' (68 to 98.	20, 6 3% 3%	RM	LBM	NM	NM	MP	NM	C+B+P	2
104	Nhung et al., 2018	CS	V	2016 to 2017	N			10/19, 52.6% (28.9% to 75.5%)	RM	SS	NM	NM	MP	NM	C+B+P	2
105	Nidaullah et al., 2017	CS	MY	2014 to 2015	N	30/30, 100% (100% to 100%)			Car	SH	NM	NM		NM	C+B+Se	2
106	Niyomdecha et al., 2016	CS	TH	2015	N	25/40, 62.5% (47.5% to 77.5%)			RM	RO	NM	NM	MP	NM	C+B+S	2
107	Novera et al., 2020	CS	INDO	NM	N	30/107, 28% (19.5% to 36.6%)			CM	Re	NM	NM	NM	NM	C+B+P	2
108	Adesiji et al.,2018	CS	IND	NM	N	8/78, 10.3% (3.5% to 17%)			RM	RO	NM	NM	D	NM	C+B+P	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

109	Padungtod et	CS	TH	2000 to	Ν	18/425, 4.2% (2.3% to		Cl	Fa	NM	NM	MP	NM	C+B+Se	2
	al., 2006			2003		6.2%)									
110	Padungtod et	CS	TH	2000 to	Ν	31/73, 42.5% (31.1%		Cl	SH	NM	NM	MP	NM	C+B+Se	2
	al., 2006			2003		to 53.8%)									
111	Padungtod et	CS	TH	2000 to	Ν	41/72, 56.9% (45.5%		RM	LBM	NM	NM	MP	NM	C+B+Se	2
	al., 2006			2003		to 68.4%)									
112	Parvej et al.,	CS	BD	NM	Ν	11/150, 7.3% (3.2% to		Cl	Fa	NM	CH	D	NM	C+B+Se+P	2
	2016					11.5%)								+PFGE	
113	Patoli et al.,	CS	IND	2016 to	Ν	7/10, 70% (41.6% to		ES	RO	NA	NA	D	NM	C+B	2
	2019			2017		98.4%)									
114	Patoli et al.,	CS	IND	2016 to	Ν	14/50, 28% (15.6% to		RM	RO	NM	NM	D	NM	C+B	2
	2019			2017		40.5%)									
115	Prasertsee et	CS	TH	2017	Ν	6/20, 30% (9.9% to		RM	SS	NM	NM	MP	Pr	C+B+P	1
	al., 2019					50.1%)									
116	Prasertsee et	CS	TH	2017	Ν	5/30, 16.7% (3.3% to		RM	RO	NM	NM	MP	Pr	C+B+P	1
	al., 2019					30%)									
117	Prasertsee et	CS	TH	2017	Ν	30/70, 42.9% (31.3%		RM	LBM	NM	NM	MP	Pr	C+B+P	1
	al., 2019					to 54.5%)									
118	Puangburee et	CS	TH	NM	Ν	4/20, 20% (2.5% to		EC	Re	NA	NA	NM	NM	C+B+P	2
	al.,2016					37.5%)									
119	Reddy et al.,	CS	TH	NM	Ν	42/135, 31.1% (23.3%		Sk	SH	EB	NM	SP	NM	C+B	2
	2019					to 38.9%)									
120	Reddy et al.,	CS	TH	NM	Ν	29/135, 21.5% (14.6%		In	SH	EB	NM	SP	NM	C+B	2
	2019					to 28.4%)									
	109 110 111 112 113 114 115 116 117 118 119 120	$ \begin{array}{c cccc} 109 & Padungtod et \\ al., 2006 \\ \hline 110 & Padungtod et \\ al., 2006 \\ \hline 111 & Padungtod et \\ al., 2006 \\ \hline 112 & Parvej et al., 2016 \\ \hline 113 & Patoli et al., 2019 \\ \hline 114 & Patoli et al., 2019 \\ \hline 115 & Prasertsee et \\ al., 2019 \\ \hline 115 & Prasertsee et \\ al., 2019 \\ \hline 116 & Prasertsee et \\ al., 2019 \\ \hline 117 & Prasertsee et \\ al., 2019 \\ \hline 118 & Puangburee et \\ al., 2019 \\ \hline 118 & Puangburee et \\ al., 2019 \\ \hline 118 & Puangburee et \\ al., 2019 \\ \hline 119 & Reddy et al., 2019 \\ \hline 120 & Reddy et al., 2019 \\ \hline \end{array} $	$ \begin{array}{c c} 109 & Padungtod et \\ al., 2006 & \\ \hline \\ 110 & Padungtod et \\ al., 2006 & \\ \hline \\ 111 & Padungtod et \\ al., 2006 & \\ \hline \\ 111 & Padungtod et \\ al., 2006 & \\ \hline \\ 112 & Parvej et al., \\ 2016 & \\ \hline \\ 113 & Patoli et al., \\ 2019 & \\ \hline \\ 114 & Patoli et al., \\ 2019 & \\ \hline \\ 115 & Prasertsee et \\ al., 2019 & \\ \hline \\ 115 & Prasertsee et \\ al., 2019 & \\ \hline \\ 116 & Prasertsee et \\ al., 2019 & \\ \hline \\ 117 & Prasertsee et \\ al., 2019 & \\ \hline \\ 118 & Puangburee et \\ al., 2019 & \\ \hline \\ 118 & Puangburee et \\ al., 2019 & \\ \hline \\ 118 & Puangburee et \\ al., 2019 & \\ \hline \\ 119 & Reddy et al., \\ 2019 & \\ \hline \\ 120 & Reddy et al., \\ 2019 & \\ \hline \end{array} $	$ \begin{array}{c cccc} 109 & Padungtod et \\ al., 2006 & CS & TH \\ al., 2006 & CS & DD \\ 2016 & CS & DD \\ 2019 & CS & DD \\ 2019 & CS & IND \\ 116 & Prasertsee et & CS & TH \\ al., 2019 & CS & TH \\ al. & 2019 & CS & TH \\ black $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109 Padungtod et al., 2006 CS TH 2000 to 2003 N 18/425, 4.2% (2.3% to 6.2%) Cl Fa NM NM MP NM C+B+Se 110 Padungtod et al., 2006 CS TH 2000 to 2003 N 31/73, 42.5% (31.1% to 53.8%) Cl SH NM NM MP NM C+B+Se 111 Padungtod et al., 2006 CS TH 2000 to 2003 N 41/72, 56.9% (45.5% to 68.4%) RM LBM NM NM MP NM C+B+Se 112 Parvej et al., 2016 CS TH 2000 to 2017 N 11/10, 7.3% (3.2% to 11.5%) Cl Fa NM CH D NM C+B+Se+P +PFGE 113 Patoli et al., 2019 CS IND 2016 to 2017 N 7/10, 70% (41.6% to 98.4%) ES RO NA NA D NM C+B 114 Patoli et al., 2019 CS IND 2016 to 2017 N 6/20, 30% (9.9% to 50.0%) RM RO NM NM MP Pr C+B+P 116 Prasertsee et al.,

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

121	Reddy et al.,	CS	TH	NM	Ν	49/120, 40.8% (32%	Car	RO	EB	NM	SP	NM	C+B	2
	2019					to 49.6%)								
122	Ruban and	CS	IND	2008 to	Ν	134/280, 47.9% (42%	RM	SH	NM	NM	D	NM	C+B	2
	fairoze, 2011			2009		to 53.7%)								
123	Sajid et al.,	CS	PAK	2010 to	Ν	13/207, 6.3% (3% to	Lu	Μ	NM	NM	MP	Con	C+B	2
	2015			2013		9.6%)								
124	Sajid et al.,	CS	PAK	2010 to	Ν	9/132, 6.8% (2.5% to	hr	М	NM	NM	MP	Con	C+B	2
	2015			2013		11.1%)								
125	Sajid et al.,	CS	PAK	2010 to	Ν	27/205, 13.2% (8.5%	LI	М	NM	NM	MP	Con	C+B	2
	2015			2013		to 17.8%)								
126	Sajid et al.,	CS	PAK	2010 to	Ν	8/158, 5.1% (1.6% to	Spl	М	NM	NM	MP	Con	C+B	2
	2015			2013		8.5%)								
127	Sajid et al.,	CS	PAK	2010 to	Ν	6/127, 4.7% (1% to	K	М	NM	NM	MP	Con	C+B	2
	2015			2013		8.4%)								
128	Sajid et al.,	CS	PAK	2010 to	Ν	23/240, 9.6% (5.9% to	0	М	NM	NM	MP	Con	C+B	2
	2015			2013		13.3%)								
129	Sajid et al.,	CS	PAK	2010 to	Ν	22/228, 9.7% (5.8% to	Е	Η	NA	NA	MP	Con	C+B	2
	2015			2013		13.5%)								
130	Saha et al.,	CS	IND	2011	Ν	6/150, 4% (0.9% to	RM	RO	NM	NM	D	Pr	C+B	2
	2016					7.1%)								
131	Saharan et al.,	CS	IND	2015 to	Ν	58/80, 72.5% (62.7%	CC	RO	NM	NM	SP	NM	C+B+P	2
	2020			2018		to 82.3%)								
132	Saikia and	CS	IND	2007 to	Ν	22/110, 20% (12.5% to	М	RO	NM	NM	MP	NM	C+B	2
	Joshi, 2010			2008		27.5%)		1						

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

133	Samad et al.,	CS	PAK	2016	Ν	24/100, 24% (15.6%)	RM	RO	NM	NM	D	Pr	C+B+P	2
124	2010 Samad at al	CS	DAV	2016	N	10.52.470	DM	P.O.	NM	NM	D	Da		2
134		CS	PAK	2010	IN	28/100, 2870 (19.270)	PIVI	ĸO	INIVI	INIVI	D	Pf	C+D+P	2
	2018					10 30.8%)								<u> </u>
135	Samad et al.,	CS	PAK	2016	Ν	66/200, 33% (26.5%	RM	RO	NM	NM	D	Pr	C+B+P	2
	2018					to 39.5%)								
136	Samanta et	CS	IND	NM	Ν	6/40, 15% (3.9% to	Cl	HH	RIR	CH	SP	NM	C+B+P+Se	2
	al., 2019					26.1%)								
137	Saravanan et	CS	IND	NM	Ν	1/21, 4.8% (-4.4% to	Yo	Fa	EL	Dea	MP	NM	C+B+P+PF	2
	al., 2015					13.9%)				d			GE	
138	Saravanan et	CS	IND	NM	Ν	5/104, 4.8% (0.7% to	LI	Fa	EL	Dea	MP	NM	C+B+P+PF	2
	al., 2015					8.9%)				d			GE	
139	Saravanan et	CS	IND	NM	Ν	2/96, 2.1% (-0.8% to	0	Fa	EL	Dea	MP	NM	C+B+P+PF	2
	al., 2015					4.9%)				d			GE	
140	Saravanan et	CS	IND	NM	Ν	2/103, 1.9% (-0.7% to	In	Fa	EL	Dea	MP	NM	C+B+P+PF	2
	al., 2015					4.6%)				d			GE	
141	Saravanan et	CS	IND	NM	Ν	0/11, 0% (0% to 0%)	Spl	Fa	EL	Dea	MP	NM	C+B+P+PF	2
	al., 2015						1			d			GE	
142	Saravanan et	CS	IND	NM	Ν	2/57. 3.5% (-1.3% to	М	Fa	EL	Dea	MP	NM	C+B+P+PF	2
	al., 2015					8.3%)				d			GE	
143	Saravanan et	CS	IND	NM	Ν	0/213.0% (0% to 0%)	Е	Fa	NA	NA	MP	NM	C+B+P+PF	2
1.5	al 2015				÷ •								GE	-
144	Sarayanan et	CS	IND	NM	N	0/174 0% (0% to 0%)	PM	Fa	EI	NM	MP	NM	C+B+D+DF	2
144		Co		1 1 1 1 1	IN	0/1/4, 0/0 (0/0 to 0/0)	IXIVI	ra		INIVI	IVII	INIVI		4
1	ai., 2015	1		1						1			GE	

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

-		-						-			-			
145	Saud et al.,	CS	NP	2017	Ν	6/70, 8.6% (2% to	RM	RO	NM	NM	D	SPr	C+B	2
	2019					15.1%)								
146	Selvaraj et al.,	CS	IND	NM	Ν	2/38, 5.3% (-1.8% to	In	RO	NM	NM	NM	NM	C+B	2
	2010				М	12.4%)								
147	Selvaraj et al.,	CS	IND	NM	Ν	3/60, 5% (-0.5% to	М	RO	NM	NM	NM	NM	C+B	2
	2010				Μ	10.5%)								
148	Selvaraj et al.,	CS	IND	NM	Ν	2/25, 8% (-2.6% to	RM	RO	NM	NM	NM	NM	C+B	2
	2010				Μ	18.6%)								
149	Selvaraj et al.,	CS	IND	NM	Ν	1/17, 5.9% (-5.3% to	ES	RO	NA	NA	NM	NM	C+B	2
	2010					17.1%)								
150	Shafini et al.,	CS	MY	NM	Ν	52/72, 72.2% (61.9%	RM	М	NM	NM	SP	NM	C+B+MAL	2
	2017					to 82.6%)							DI-TOF	
151	Shafini et al.,	CS	MY	NM	Ν	7/30, 23.3% (8.2% to	RM	М	NM	NM	SP	NM	C+B+MAL	2
	2017					38.5%)							DI-TOF	
152	Shafini et al.,	CS	MY	NM	Ν	3/54, 5.6% (-0.6% to	PM	М	NM	NM	SP	NM	C+B+MAL	2
	2017					11.7%)							DI_TOF	
153	Sharma et al.,	CS	IND	2017	Ν	28/188, 14.9% (9.8%	RM	RO	NM	NM	MP	NM	C+B+P	2
	2019					to 20%)								
154	Singh et al.,	CS	IND	2006 to	Ν	7/260, 2.7% (0.7% to	EC	Fa	NA	NA	MP	NM	C+B	2
	2010			2007		4.7%)								
155	Singh et al.,	CS	IND	2006 to	Ν	2/260, 0.8% (-0.3% to	ES	Fa	NA	NA	MP	NM	C+B	2
	2010			2007		1.8%)								
156	Singh et al.,	CS	IND	2006 to	Ν	2/300, 0.7% (-0.3% to	EC	RO	NA	NA	MP	NM	C+B	2
	2010			2007		1.6%)								

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

157	Singh et al.,	CS	IND	2006 to	Ν	7/300, 2.3% (0.6% to		ES	RO	NA	NA	MP	NM	C+B	2
	2010			2007		4%)									
158	Singh et al.,	CS	IND	NM	Ν	6/180, 3.3% (0.7% to		EC	Fa	NA	NA	D	NM	C+B+P	2
	2013					6%)									
159	Singh et al.,	CS	IND	NM	Ν	8/180, 4.4% (1.4% to		Cl	Fa	EL	NM	D	NM	C+B+P	2
	2013					7.5%)									
160	Soomro et al.,	CS	PAK	NM	Ν	38/100, 38% (28.5%		RM	RO	NM	NM	SP	Pr	C+B	2
	2010					to 47.5%)									
161	Srinivasan et	CS	IND	2005 to	Ν	14/30, 46.7% (28.8%		LI	Fa	EL	Dea	D	Pr	C+B+P	2
	al., 2014			2008		to 64.5%)					d				
162	Srinivasan et	CS	IND	2005 to	Ν	15/30, 50% (32.1% to		Spl	Fa	EL	Dea	D	Pr	C+B+P	2
	al., 2014			2008		67.9%)		1			d				
163	Srinivasan et	CS	IND	2005 to	Ν	17/30, 56.7% (38.9%		Cl	Fa	EL	Dea	D	Pr	C+B+P	2
	al., 2014			2008		to 74.4%)					d				
164	Srinivasan et	CS	IND	2005 to	Ν	16/30, 53.3% (35.5%		0	Fa	EL	Dea	D	Pr	C+B+P	2
	al., 2014			2008		to 71.2%)					d				
165	Srinivasan et	CS	IND	2005 to	Ν	17/30, 56.7% (38.9%		OvI	Fa	EL	Dea	D	Pr	C+B+P	2
	al., 2014			2008		to 74.4%)					d				
166	Srinivasan et	CS	IND	2005 to	Ν	5/40, 12.5% (2.3% to		Cl	Fa	EL	CH	D	Pr	C+B+P	2
	al., 2014			2008		22.8%)									
167	Srinivasan et	CS	IND	2005 to	Ν		2/85,	М	Fa	EL	Both	D	Pr	C+B+P	2
	al., 2014			2008			2.3%								
							(0.3 to								
							8.2%)								

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

	168	Sripaurya et	CS	TH	2016	Ν	17/36, 47.2% (30.9%	RM	LBM	NM	NM	D	NM	C+B+P	2
		al., 2019					to 63.5%)								
	169	Suresh et al.,	CS	IND	1997 to	Ν	9/492, 1.8% (0.7% to	EC	RO	NA	NA	D	Pr	C+B	2
		2006			1998		3%)								
	170	Suresh et al.,	CS	IND	1997 to	Ν	30/492, 6.1% (4% to	ES	RO	NA	NA	D	Pr	C+B	2
		2006			1998		8.2%)								
ſ	171	Suresh et al.,	CS	IND	NM	Ν	11/214, 5.1% (2.2% to	Sk	RO	EB	NM	D	NM	C+B+Se	2
		2011					8.1%)								
ſ	172	Suresh et al.,	CS	IND	NM	Ν	3/214, 1.4% (-0.2% to	Cl	RO	EB	NM	D	NM	C+B+Se	2
		2011					3%)								
Γ	173	Suresh et al.,	CS	IND	NM	Ν	14/203, 6.9% (3.4% to	Cr	RO	EB	NM	D	NM	C+B+Se	2
		2011					10.4%)								
Γ	174	Suresh et al.,	CS	IND	NM	Ν	10/198, 5.1% (2% to	CC	RO	EB	NM	D	NM	C+B+Se	2
		2011					8.1%)								
Γ	175	Suresh et al.,	CS	IND	NM	Ν	8/198, 4% (1.3% to	In	RO	EB	NM	D	NM	C+B+Se	2
		2011					6.8%)								
ſ	176	Suresh et al.,	CS	IND	NM	Ν	8/214, 3.7% (1.2% to	Mo	RO	EB	NM	D	NM	C+B+Se	2
		2011					6.3%)								
	177	Suresh et al.,	CS	IND	NM	Ν	54/214, 25.2% (19.4%	М	RO	NM	NM	D	NM	C+B+Se	2
		2011					to 31.1%)								
Γ	178	Ta et al., 2014	CS	V	NM	Ν	13/30, 43.3% (25.6%	Car	SS	EB	NM	MP	NM	C+B+Se	2
							to 61.1%)								
Γ	179	Ta et al., 2014	CS	V	NM	Ν	133/270, 49.3%	Car	LBM	EB	NM	MP	NM	C+B+Se	2
							(43.3% to 55.2%)								

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

180	Hathai, 2012	CS	IND	2008 to 2009	N	63/148, 42.6% (34.6% to 50.5%)	RM	RO	NM	NM	MP	NM	C+B+Se	2
181	Phan et al., 2005	CS	V	2000 to 2001	N	42/200, 21% (15.4% to 26.7%)	RM	RO	NM	NM	MP	NM	C+B	2
182	Trongjit et al., 2014	CS	TH	2014 to 2015	N	10/90, 11.1% (4.6% to 17.6%)	RM	SH	EB	NM	SP	NM	C+B+P	2
183	Trongjit et al., 2014	CS	TH	2014 to 2015	N	69/105, 65.7% (56.6% to 74.8%)	Car	LBM	EB	NM	SP	NM	C+B+P	2
184	Trongjit et al., 2014	CS	CAM	2014 to 2015	N	6/100, 6% (1.4% to 10.7%)	RM	SH	EB	NM	SP	NM	C+B+P	2
185	Trongjit et al., 2014	CS	CAM	2014 to 2015	Ν	72/87, 82.8% (74.8% to 90.7%)	Car	LBM	EB	NM	SP	NM	C+B+P	2
186	Utrarachkij et al., 2012	CS	TH	2000	Ν	0/240, 0% (0% to 0%)	ES	Fa	NA	NA	SP	NM	C+B+PGF E	2
187	Utrarachkij et al., 2012	CS	TH	2000	Ν	0/240, 0% (0% to 0%)	EC	Fa	NA	NA	SP	NM	C+B+PGF E	2
188	Utrarachkij et al., 2012	CS	TH	2000	N	8/30, 26.7% (10.8% to 42.5%)	ES	RO	NA	NA	SP	NM	C+B+PGF E	2
189	Utrarachkij et al., 2012	CS	TH	2000	N	0/30, 0% (0% to 0%)	EC	RO	NA	NA	SP	NM	C+B+PGF E	2
190	Vadhanasin et al., 2004	CS	TH	NM	N	60/244, 24.6% (19.2% to 30%)	RM	SH	EB	NM	NM	NM	C+B+Se	2
191	Vaeteewootac harn et al., 2005	CS	TH	2002	N	81/84, 96.4% (92.5% to 100.4%)	RM	M	NM	NM	D	Pr	C+B+Se	2

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

192	Van et al.,	CS	V	2004	Ν	16/30, 53.3% (35.5%		RM	М	NM	NM	D	Pr	C+B+P+Se	2
193	Vindigni et	CS	TH	2003	N	31/50, 62% (48.6% to		RM	М	NM	NM	SP	Con	C+B+Se	2
	al., 2007					75.5%)									
194	Vindigni et	CS	TH	2003	Ν	7/50, 14% (4.4% to		Е	М	NA	NA	SP	Con	C+B+Se	2
	al., 2007					23.6%)									
195	Waghamare et	CS	IND	NM	Ν	3/12, 25% (0.5% to		Cl	Fa	NM	NM	D	NM	C+B+P	2
	al., 2017					49.5%)									
196	Waghamare et	CS	IND	NM	Ν	1/6, 16.7% (-13.2% to		Cl	SH	NM	NM	D	NM	C+B+P	2
	al., 2017					46.5%)									
197	Wardhana et	CS	INDO	NM	Ν	11/60, 18.3% (8.5% to		RM	LBM	NM	NM	SP	NM	C+B	2
	al., 2019					28.1%)									
198	Yang et al.,	CS	IND	2017	Ν	36/200, 18% (12.7%		CC	SH	EB	NM	SP	Pr	C+B+PGF	2
	2018					to 23.3%)								Е	
199	Yasmin et al.,	CS	PAK	NM	Ν	17/50, 34% (20.9% to		LI	NM	NM	NM	SP	NM	C+B+P	2
	2020					47.1%)									
200	Yasmin et al.,	CS	PAK	NM	Ν	25/50, 50% (36.1% to		In	NM	NM	NM	SP	NM	C+B+P	2
	2020					63.9%)									
201	Zwe et al.,	CS	SIN	2015 to	Ν	30/120, 25% (17.3%		RM	LBM	NM	NM	NM	NM	C+B+P	2
	2018			2016		to 32.8%)									
202	Zwe et al.,	CS	SIN	2015 to	Ν	19/150, 12.7% (7.3%		RM	SS	NM	NM	NM	NM	C+B+P	2
	2018			2016		to 18%)									
203	Murugadas et	CS	IND	NM	Ν	4/75, 5.3% (0.3% to		Cl	RO	NM	NM	D	NM	C+B+P	2
	al., 2015					10.4%)									
	192 193 194 195 196 197 198 199 200 201 202 203	192 Van et al., 2007 193 Vindigni et al., 2007 194 Vindigni et al., 2007 195 Waghamare et al., 2017 196 Waghamare et al., 2017 197 Wardhana et al., 2019 198 Yang et al., 2018 199 Yasmin et al., 2020 200 Yasmin et al., 2020 201 Zwe et al., 2018 202 Zwe et al., 2018 202 Zwe et al., 2018 203 Murugadas et al., 2015	192 Van et al., 2007 CS 193 Vindigni et al., 2007 CS 194 Vindigni et al., 2007 CS 194 Vindigni et al., 2007 CS 195 Waghamare et al., 2017 CS 196 Waghamare et al., 2017 CS 197 Wardhana et al., 2019 CS 198 Yang et al., 2018 CS 199 Yasmin et al., 2020 CS 200 Yasmin et al., 2020 CS 201 Zwe et al., 2018 CS 202 Zwe et al., 2018 CS 202 Zwe et al., 2018 CS 203 Murugadas et al., 2015 CS	192Van et al., 2007CSV193Vindigni et al., 2007CSTH194Vindigni et al., 2007CSTH195Waghamare et al., 2017CSIND196Waghamare et al., 2017CSIND197Wardhana et al., 2019CSINDO198Yang et al., 2018CSINDO199Yasmin et al., 2018CSPAK200Yasmin et al., 2020CSSIN201Zwe et al., 2018CSSIN202Zwe et al., 2018CSSIN203Murugadas et al., 2015CSIND	192 Van et al., 2007 CS V 2004 193 Vindigni et al., 2007 CS TH 2003 194 Vindigni et al., 2007 CS TH 2003 195 Waghamare et al., 2017 CS IND NM 196 Waghamare et al., 2017 CS IND NM 197 Wardhana et al., 2019 CS IND NM 198 Yang et al., 2018 CS IND NM 199 Yasmin et al., 2020 CS PAK NM 2000 Yasmin et al., 2018 CS SIN 2015 to 2016 201 Zwe et al., 2018 CS SIN 2015 to 2016 202 Zwe et al., 2018 CS SIN 2015 to 2016 203 Murugadas et al., 2015 CS IND NM	192 Van et al., 2007 CS V 2004 N 193 Vindigni et al., 2007 CS TH 2003 N 194 Vindigni et al., 2007 CS TH 2003 N 194 Vindigni et al., 2007 CS TH 2003 N 195 Waghamare et al., 2017 CS IND NM N 196 Waghamare et al., 2017 CS IND NM N 197 Wardhana et al., 2019 CS IND NM N 198 Yang et al., 2018 CS IND 2017 N 199 Yasmin et al., 2020 CS PAK NM N 200 Yasmin et al., 2018 CS SIN 2015 to 2016 N 202 Zwe et al., 2018 CS SIN 2015 to 2016 N 203 Murugadas et al., 2015 CS IND NM N	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	192 Van et al., 2007 CS V 2004 N 16/30, 53.3% (35.5% to 71.2%) RM M NM NM NM P 193 Vindigni et al., 2007 CS TH 2003 N 31/50, 62% (48.6% to 75.5%) RM M M NM NM SP 194 Vindigni et al., 2007 CS TH 2003 N 7/50, 14% (4.4% to 23.6%) E M NA NA SP 194 Vindigni et al., 2017 CS TH 2003 N 7/50, 14% (4.4% to 23.6%) E M NA NA SP 195 Waghamare et al., 2017 CS IND NM N 3/12, 25% (0.5% to 46.5%) CI Fa NM NM D 196 Waghamare et al., 2017 CS IND NM N 1/6, 16.7% (-13.2% to 46.5%) RM LBM NM NM SP 197 Wardhana et al., 2019 CS IND NM N 1/6, 18.3% (8.5% to 28.1%) CC SH EB NM SP 2018 CS	192Van et al., 2007CSV2004N16/30, 53.3% (35.5% to 71.2%)RMMNMNMDPr193Vindigni et al., 2007CSTH2003N31/50, 62% (48.6% to 75.5%)RMMMNMSPCon 75.5%)194Vindigni et al., 2007CSTH2003N7/50, 14% (4.4% to 23.6%)EMNANASPCon195Waghamare et al., 2017CSINDNMN31/12, 25% (0.5% to 49.5%)ClFaNMNMDNM196Waghamare et al., 2017CSINDNMN1/12, 25% (0.5% to 49.5%)ClFaNMNMDNM196Waghamare et al., 2017CSINDNMN1/6, 16.7% (-13.2% to 46.5%)ClSHNMNMDNM197Wardhana et al., 2019CSINDNMN1/60, 18.3% (8.5% to 23.3%)RMLBMNMNMSPNM198Yang et al., 2018CSIND2017N36/200, 18% (12.7% to 23.3%)CCSHEBNMSPPr200Yasmin et al., 2020CSSPAKNMN17/50, 34% (20.9% to 47.1%)LINMNMSPNM201Zuse et al., 2020CSSIN2015 to 2016N30/120, 25% (17.3% 40.3%)RMLBMNMNMNM <td>192 Van et al., 2007 CS V 2004 N 16/30, 53.3% (35.5% to 71.2%) RM M NM NM D Pr C+B+P-Se 193 Vindigni et al., 2007 CS TH 2003 N 31/50, 62% (48.6% to 75.5%) RM MM NM NM SP Con C+B+Se 194 Vindigni et al., 2007 CS TH 2003 N 7/50, 14% (44.% to 23.6%) RM M NA NA SP Con C+B+Se 195 Waghamare et al., 2017 CS TH 2003 N 7/50, 14% (44.% to 23.6%) Cl Fa MM NM SP Con C+B+Se 195 Waghamare et al., 2017 CS IND NM N 3/12, 25% (0.5% to 46.5%) Cl Fa NM NM D NM C+B+P 196 Waghamare et al., 2017 CS IND NM N 1/60, 18.3% (8.5% to 28.1%) RM LBM NM NM SP NM C+B+P 197 Wardhan et al., 2018 CS IND 2017<!--</td--></td>	192 Van et al., 2007 CS V 2004 N 16/30, 53.3% (35.5% to 71.2%) RM M NM NM D Pr C+B+P-Se 193 Vindigni et al., 2007 CS TH 2003 N 31/50, 62% (48.6% to 75.5%) RM MM NM NM SP Con C+B+Se 194 Vindigni et al., 2007 CS TH 2003 N 7/50, 14% (44.% to 23.6%) RM M NA NA SP Con C+B+Se 195 Waghamare et al., 2017 CS TH 2003 N 7/50, 14% (44.% to 23.6%) Cl Fa MM NM SP Con C+B+Se 195 Waghamare et al., 2017 CS IND NM N 3/12, 25% (0.5% to 46.5%) Cl Fa NM NM D NM C+B+P 196 Waghamare et al., 2017 CS IND NM N 1/60, 18.3% (8.5% to 28.1%) RM LBM NM NM SP NM C+B+P 197 Wardhan et al., 2018 CS IND 2017 </td

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion
			•					_				•	•	
204	Murugadas et al., 2015	CS	IND	NM	Ν	2/69, 2.9% (-1.1% to 6.9%)	LI	RO	NM	NM	D	NM	C+B+P	2
205	Murugadas et al., 2015	CS	IND	NM	N	0/58, 0% (0% to 0%)	0	RO	NM	NM	D	NM	C+B+P	2
206	Murugadas et al., 2015	CS	IND	NM	N	0/80, 0% (0% to 0%)	In	RO	NM	NM	D	NM	C+B+P	2
207	Murugadas et al., 2015	CS	IND	NM	N	2/75, 2.7% (-1% to 6.3%)	RM	RO	NM	NM	D	NM	C+B+P	2
208	Murugadas et al., 2015	CS	IND	NM	N	3/65, 4.6% (-0.5% to 9.7%)	EC	RO	NA	NA	D	NM	C+B+P	2
209	Sudhanthirak odi et al., 2016	CS	IND	2012 to 2013	N	11/50, 22% (10.5% to 33.5%)	Cl	Fa	NM	NM	SP	Pr	C+B	2
210	Sudhanthirak odi et al., 2016	CS	IND	2012 to 2013	N	20/50, 40% (26.4% to 53.6%)	RM	RO	NM	NM	SP	Pr	C+B	2
211	Sudhanthirak odi et al., 2016	CS	IND	2012 to 2013	N	0/50, 0% (0% to 0%)	EC	RO	NA	NA	SP	Pr	C+B	2
212	Lertworapree cha et al., 2013	CS	TH	2010	N	27/40, 67.5% (53% to 82%)	RM	RO	NM	NM	SP	Pr	C+B	2
213	Al-Salauddin et al., 2015	CS	BD	2015	Ν	18/60, 30% (18.4% to 41.6%)	RM	LBM	EB	NM	MP	NM	C+B+P	2

SD= Study design, CS= Cross-sectional,

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

Q= Quality of study, 1= Quality 1, 2= Quality 2

214	Kulasooriya	CS	SL	2014	Ν	7/51, 13.7% (4.3% to	RM	RO	NM	NM	D	NM	C+B	2
215	Kulasooriya et al., 2019	CS	SL	2014	N	2/48, 4.2% (-1.5% to 9.8%)	РМ	RO	NM	NM	D	NM	C+B	2
216	Kulasooriya et al., 2019	CS	SL	2014	N	0/22, 0% (0% to 0%)	СМ	Re	NM	NM	D	Pr	C+B	2
217	Maqdhurangi et al., 2013	CS	SL	2013	N	15/83, 18.1% (9.8% to 26.4%)	RM	RO	NM	NM	D	Pr	C+B	2
218	Bao et al., 2006	CS	V	2004 to 2005	N	136/319, 42.6% (37.2% to 48.1%)	Car	SH	NM	NM	D	NM	C+B+P	2
219	Islam et al., 2018	CS	BD	NM	N	14/20, 70% (49.9% to 90.1%)	RM	LBM	EB	СН	MP	Pr	C+B+P	1
220	Wajid et al., 2018	CS	PAK	NM	N	239/340, 70.3% (65.4% to 75.2%)	М	Fa	NM	Sick	D	NM	C+B+P+P GFE+MAL DI-TOF	2

SD= Study design, CS= Cross-sectional,

C= Country, TH= Thailand, BD= Bangladesh, PAK= Pakistan, IND= India, MY=Malaysia, CAM= Cambodia, SL= Sri Lanka, PH= Philippines, V= Vietnam, SIN= Singapore, MM= Myanmar, NP=Nepal, INDO= Indonesia, BH= Bhutan SP= Study period,

Po= Pooling, Y=Yes, N=No

n= Number of positive samples, N= Number of total samples, CI= Confidence interval

Sam= Sample unit, ST=Type of sample, RM= Raw meat, Cl= Cloacal swab, CC= Caecal content, Sk= Skin, Car= Carcass, CM=Cooked meat, RTE= Ready to eat meat, In= Intestine, Fea= Feather, PM= Processed meat, Li= Liver, Mec= Chick meconium, Gi= Gizzard, M= Mixed, ES= Egg surface swab, EC= Egg content, E= Egg (shell or content not specified), BE= Boiled egg, Hr= Heart, K= Kidney, Yo= Yolk sac, O= Ovary, Spl= Spleen, Lu= Lungs, DE= Dead embryo, Ovi= Oviduct, Cr= Crop, Mo= Mouth

S= Study site, LBM= Live bird market, SH= Slaughter house, Fa=Farm, RO= Retail outlet, SS= Supershop, Re= Restaurant, HH= Household, H= Hatchery

PT= Production type, EB= Exotic broiler, EL= Exotic layer, I= Indigenous, Br= Breeder, Coc= Cockerel, HB= Hybrid broiler, Son= Sonai, Lab=Laboratory

HS= Health status, CH= Clinically healthy, Both= Dead and clinically healthy, NA= Not applicable

L= Study level, D= District, SP= Single province, MP= Multiple provinces, NM= Not mentioned

SA= Sampling approach, Pr= Probabilistic sampling, SPr= Simple probabilistic, SysPr= Systematic probabilistic, PrP= Proportionate probabilistic, Con= Convenient sampling, Pur= Purposive

MC= Method of confirmation, C= Culture, B= Biochemical tests, P= Polymerase chain reaction S= Serotyping, MALDI-TOF= Matrix-assisted laser desorption/ionization-time of flight, PFGE= Pulse field gel electrophoresis Agarose = Agarose gel diffusion

Q= Quality of study, 1= Quality 1, 2= Quality 2

Appendix C. Forest plot for pooled prevalence (sample unit) of *Campylobacter* in chickens across different south and southeast Asian countries

Prevaler with 95%	CI
	1.501
69.44 [54.40.	84.49
- 50.00 (23.81.	76,19
42.86 (29.00,	56.71
28.57 [11.84,	45.30
- 51.85 (33.01)	70,70
0.001-0.11	0.11
39.45 (19.03	59.87
10 C	
+ 80.92 [74.67,	87.17
56.09 [50.91,	61.27
68.44 [44.11,	92.77
+ 95.00 [88.25	101.75
- 71.05 [56.63	85 47
48 00 (38 21	57 79
25 45 [17 31	33 50
24 00 [17 17	30.83
29.67 (20.97	AC 46
9.001 0.49	40.40
0.001 0.40,	10.02
40.00 [30.23,	00.//
32.00 22.86,	41.14
7.62 4.03	11.21
3.60 0.14	7.07
0.00 [-0.10,	0.10
14.00 [10.07.	17.93
15.52 [8.93,	22.11
24.00 [18.71,	29.29
59.58 [53.37,	65.79
57.08 [50.82,	63.35
11.62 [8.36,	14.89
 72.00 [63.20, 	80.80
14.29 2.69	25.88
11.76 [2.92,	20.61
13.55 [9.31,	17.78
44.88 (36.23,	53.53
5.56 (-0.55.	11.67
15.69 5.71	25.67
4.351-3.99	12.68
30.00 (18.40	41.60
13 55 [0 31	17 78
29.63 (10.59	37 68
20.03 [19.90,	37.00
0.00 [-0.05,	0.05
- 59.46 [43.64,	75.28]
35.11 [29.87,	40.35
15.33 9.57	21.10
28.33 [16.93.	39.74
31.00 [21.94	40.06
27,29118.11	36.47
Contract Contract	1000
	27.29 [18.11,

Random-effects REML model

Chut		Prevaler	CE
Malaysia		With 95%	G
Ibrahim et al. 2018		20 00 1 13 37	26.631
Mansouri-paiand et al. 2012	-	39 08 128 83	49 331
Mansouri-najand et al., 2012	100	60.92 [50.67	71 171
Mohamed-Yousif et al. 2019		60 40 1 50 86	69 931
Reish et al. 2012		93 33 1 84 41	102 261
Paigh at al. 2012	-	60 65 [54 13	67 161
Sinulingga et al. 2010	+	50 05 [14 10	57 711
Sinulingga et al. 2010	12.00	14 121 6 72	21 521
Sinulingga et al., 2010		68 00 [40 71	86 201
Hotomonopolity: $r^2 = 697.13$ $I^2 = 06.00\%$ $H^2 = 33.10$		61 67 [25 51	67 941
Test of $\theta_i = \theta_i$: Q(8) = 283.23, p = 0.00	-	51.07 [55.51,	01:04]
Pakistan			
Arshad et al., 2019		50.00 [35.86,	64.14]
Ejaz et al., 2004		58.10 [55.04,	61.16]
Hussain et al., 2007	+	47.97 [43.55,	52.38]
Nisar et al., 2017	-	29.00 [22.71.	35.291
Samad et al., 2018		32.00122.86	41.141
Samad et al. 2018	+	48.00 [38.21	57 791
Siddigui et al. 2015		35 23 [25 25	45 211
Wai et al. 2012	+	91 23 [83 88	98 571
Wai et al. 2012		71 88 [56 30	87 451
Heterogeneity: $r^2 = 384.19$ $I^2 = 97.08\%$ $H^2 = 34.25$	-	51 34 [38 15	64 541
Test of $\theta_i = \theta_i$: Q(8) = 214.97, p = 0.00		01.04100.10,	04.04]
Philippines			
Lim et al., 2017		43.90 [28.71,	59.09]
Lim et al., 2017		75.61 [62.46,	88.75]
Lim et al., 2017		85.71 [75.13,	96.30]
Lim et al., 2017		89.47 75.67.	103.271
Lim et al., 2017	-	97.37 92.28.	102.461
Lim et al., 2017		88.10 78.30.	97.891
Lim et al., 2017		73.81 [60.51.	87,111
Sison et al., 2014		47.50 [38.57.	56,431
Heterogeneity: $t^2 = 356.17$, $t^2 = 93.21\%$, $H^2 = 14.73$	-	75.51 [61.81.	89.201
Test of $\theta_i = \theta_j$: Q(7) = 121.82, p = 0.00			00.201
Thailand			
Anonymous, 2009	-	65.00 [57.10,	72.90]
Bodhidatta et al., 2013		80.00 [67.60,	92.40]
Osiriphun et al., 2011	+	51.25 [44.93,	57.57]
Padungtod et al., 2005		49.63 [45.38,	53.87]
Padungtod et al., 2005		35.62 [24.63,	46.60]
Padungtod et al., 2005		38.89 [27.63,	50.15]
Prachantasena et al., 2017	+	64.49 [56.51,	72.48]
Prachantasena et al., 2017		24.75 [22.09,	27.41]
Prachantasena et al., 2017	+	64.18 [58.44,	69.92]
Reddy et al., 2019	-	28.15 [20.56,	35.73]
Reddy et al., 2019		45.19 [36.79,	53.58]
Reddy et al., 2019	-	22.50 [15.03.	29.971
Saiyudthong et al., 2015	-	68.03 [59.76.	76.311
Saivudthoog et al. 2015	+	89.81 [84 11	95 521
Vindioni et al. 2007	1000	37.04 [18.82	55 251
Vindioni et al 2007		69 57 150 76	88 371
Heterogeneity: 1 ² = 392 69 1 ² = 97 16% H ² = 35 22	-	52 05 1 42 04	62 061
Test of $\theta_i = \theta_i$: Q(15) = 683.50, p = 0.00		serve Landa	02.00]

Appendix D. Forest plot for pooled prevalence (farm unit) of *Campylobacter* in chickens across different south and southeast Asian countries

Study		Prevalen with 95%	CI
Bangladesh			
Hasan et al., 2020		40.00 [28.91,	51.09]
Hasan et al., 2020		44.44 [11.98,	76.91]
Heterogeneity: r ² = 0.00, I ² = 0.00%, H ² = 1.00	-	40.46 [29.97,	50.96]
Test of $\theta_i = \theta_j$: Q(1) = 0.06, p = 0.80			
Malaysia			
Sinulingga et al., 2019		— 85.71 [59.79,	111.64]
Pakistan			
Ejaz et al., 2004		99.95 [98.97,	100.93]
Sri Lanka			
Kalupahana et al., 2018	+	63.84 [59.79,	67.88]
Kalupahana et al., 2009		71.19 [59.63,	82.74]
Kottawatta et al., 2017		27.45 [18.79,	36.11]
Kottawatta et al., 2018		48.00 [28.42,	67.58]
Heterogeneity: τ ² = 365.40, I ² = 94.61%, H ² = 18.55		52.76 [33.12,	72.41]
Test of $\theta_i = \theta_j$: Q(3) = 61.78, p = 0.00			
Thailand			
Anonymous		99.86 [97.06,	102.66]
Chokboonmongkol et al., 2013		11.22 [4.97,	17.47]
Chokboonmongkol et al., 2013		51.02 [41.12,	60.92]
Prachantasena et al., 2017	-	57.01 [52.40,	61.63]
Heterogeneity: x ² = 1314.76, I ² = 99.50%, H ² = 201.17		54.86 [19.18,	90.54]
Test of $\theta_i = \theta_j$: Q(3) = 780.35, p = 0.00			

	0.0	0	50	00	100	.00
Random-effects REML model						

Appendix E. Forest plot for pooled prevalence (sample unit) of *Campylobacter* in different chicken samples in south and southeast Asia

Study		Prevalence with 95% CI
Caecal content		
Anonymous, 2009		65.00 [57.10, 72.90]
Chattopadhyay et al., 2003		48.00 [38.21, 57.79]
Khan et al., 2018	+	24.00 [17.17, 30.83]
Malik et al., 2014	-	32.00 [22.86, 41.14]
Mani et al., 2018	•	7.62 [4.03, 11.21]
Mansouri-najand et al., 2012		60.92 [50.67, 71.17]
Lim et al., 2017		75.61 [62.46, 88.75]
Rawat et al., 2018	-	15.52 [8.93, 22.11]
Saba et al., 2013	+	59.58 [53.37, 65.79]
Vivekanandhan et al., 2020	+	5.56 [-0.55, 11.67]
Wai et al., 2012	-	- 91.23 [83.88, 98.57]
Wai et al. 2012		71 88 [56 30, 87 45]
Heteropeneity: $r^2 = 811.44$, $l^2 = 98.38\%$, $H^2 = 61.58$	-	46 12 [29 79 62 44]
Test of $\theta_i = \theta_i$: Q(11) = 779.57, p = 0.00		10.12 [20.10, 02.11]
Carcass		25 14 122 27 12 251
Bao et al., 2006	and the second second	35.11 [29.87, 40.35]
Osiriphun et al., 2011	-	51.25 [44.93, 57.57]
Saba et al., 2013	+	57.08 [50.82, 63.35]
Singh et al., 2009	+	11.76 [2.92, 20.61]
Heterogeneity: $r^* = 390.88$, $l^* = 97.30\%$, $H^* = 37.04$ Test of $\theta_i = \theta_i$: Q(3) = 82.05, p = 0.00	•	38.96 [19.29, 58.63]
Chick meconium	8	
roog of any popo		0.001 0.111 0.111
Cloacal swab		
Begum et al., 2015		71.05 [56.63, 85.47]
Ejaz et al., 2004		58.10 [55.04, 61.16]
Mansouri-najand et al., 2012		39.08 [28.83, 49.33]
Mohamed-Yousif et al., 2019		60.40 [50.86, 69.93]
Neogi et al., 2020		42.86 [29.00, 56.71]
Osbjer et al., 2016	+	56.09 [50.91, 61.27]
Padungtod et al., 2005	-	49.63 [45.38, 53.87]
Padungtod et al., 2005		35.62 [24.63, 46.60]
Prachantasena et al., 2017	-	64.49 [56.51, 72.48]
Prachantasena et al., 2017		24.75 [22.09, 27.41]
Prachantasena et al., 2017	-	64.18[58.44, 69.92]
Rahul et al. 2016		11.62 [8.36, 14.89]
Siddigui et al. 2015		35 23 [25 25 45 21]
Sinulinona et al. 2019	+	50 95 [44 19 57 71]
Heteropeneity: x ² = 272 86 1 ² = 97 41% H ² = 38 64		47 23 [38 29 56 17]
Test of $\theta_i = \theta_i$; Q(13) = 759.05, p = 0.00		4120[00:20,00:11]
Cooked meat		
Arshad et al., 2019		50.00 [35.86, 64.14]
Aung et al., 2018		0.00 [-0.05, 0.05]
Dao et al., 2006		28.33 [16.93, 39.74]
Kulasooriya et al., 2019	+	4.35 [-3.99, 12.68]
Heterogeneity: τ^{c} = 499.99, I ² = 97.20%, H ² = 35.68 Test of θ_{i} = θ_{j} : Q(3) = 72.76, p = 0.00	-	19.97 [-2.49, 42.43]

Random-effects REML model

Study		Prevalence with 95% Cl				
Faether Khan et al., 2020	+	8.00 [0.48,	15.52]			
Gizzard content Lim et al., 2017	-	- 89.47 [75.67, 1	03.27]			
Intestine Lim et al., 2017	-	- 85.71 [75.13,	96.30]			
Reddy et al., 2019 Rizal et al., 2016 Vaishnavi et al., 2014 Heterogeneity: r ² = 642.57, I ² = 97.54%, H ² = 40.62	•	45.19 [36.79, 24.00 [18.71, 44.88 [36.23, 49.69 [24.50,	53.58] 29.29] 53.53] 74.89]			
Test of $\theta_i = \theta_j$: Q(3) = 109.43, p = 0.00 Liver Lim et al., 2017 Nayak et al., 2005 Heterogeneity: $\tau^2 = 2248.38$, $l^2 = 99.08\%$, $H^2 = 108.73$ Test of $\theta_i = \theta_i$: Q(1) = 108.73, p = 0.00	+	 97.37 [92.28, 1 30.00 [18.40, 63.89 [-2.12, 1 	02.46] 41.60] 29.91]			
Mixed Saiyudthong et al., 2015 Saiyudthong et al., 2015 Heterogeneity: $r^2 = 224.08$, $I^2 = 94.46\%$, $H^2 = 18.04$ Test of $\theta_i = \theta_i$: Q(1) = 18.04, p = 0.00	+ . •	68.03 [59.76, 89.81 [84.11, 79.14 [57.80, 1	76.31] 95.52] 00.48]			
Processed meat Samad et al., 2018	-	32.00 [22.86,	41.14]			
Skin Garin et al., 2012 Kabir et al., 2015 Lay et al., 2011 Lim et al., 2017	·	15.33 [9.57, 50.00 [23.81, 80.92 [74.67, ► 88.10 [78.30,	21.10] 76.19] 87.17] 97.89]			
Rajkumar, 2010 Reddy et al., 2019 Rejab et al., 2012 Rejab et al., 2012 Heterogeneity: $\tau^2 = 1040.79$, $l^2 = 98.84\%$, $H^2 = 86.03$ Test of $\theta_i = \theta_j$: Q(7) = 681.75, p = 0.00	-	14.00 [10.07, 28.15 [20.56, → 93.33 [84.41, 1 60.65 [54.13, 53.74 [31.05,	17.93] 35.73] 02.26] 67.16] 76.44]			

		Prevalen	ce
Study		with 95%	CI
Raw meat			
Bandekar et al., 2005		95.00 [88.25,	101.75]
Bodhidatta et al., 2013		80.00 [67.60,	92.40]
Geetha, 2013	-	25.45 [17.31,	33.59]
Huong et al., 2006		31.00 [21.94,	40.06]
Hussain et al., 2007	•	47.97 [43.55,	52.38]
Ibrahim et al., 2018	-	20.00 [13.37,	26.63]
Kabir et al., 2014		69.44 [54.40,	84.49]
Khan et al., 2019	-	38.67 [30.87,	46.46]
Kottawatta et al., 2019		59.46 [43.64,	75.28]
Kumar et al., 2015		46.00 [36.23,	55.77]
Mani et al., 2019	•	3.60 [0.14,	7.07]
Monika et al., 2016	•	13.55 [9.31,	17.78]
Neogi et al., 2020		28.57 [11.84,	45.30]
Neogi et al., 2020		51.85 [33.01,	70.70]
Nisar et al., 2017	-	29.00 [22.71,	35.29]
Lim et al., 2017		43.90 [28.71,	59.09]
Lim et al., 2017		73.81 [60.51,	87.11]
Padungtod et al., 2005		38.89 [27.63,	50.15]
Raja et al., 2018		0.00 [-0.10,	0.10]
Reddy et al., 2019	-8-	22.50 [15.03,	29.97]
Samad et al., 2018		48.00 [38.21,	57.79]
Sharma et al., 2016		72.00 [63.20,	80.80]
Singh et al., 2009		14.29 [2.69,	25.88]
Sinulingga et al., 2019		14.12 6.72,	21.52]
Sinulingga et al., 2019		68.00 [49.71,	86.29]
Sison et al., 2014		47.50 [38.57,	56.43]
Upadhvay et al., 2016		13.55 [9.31,	17.78]
Vindigni et al., 2007		37.04 [18.82.	55.251
Vindioni et al., 2007		69.57 [50.76.	88.371
Kulasooriya et al., 2019		15.69 [5.71.	25.671
Heterogeneity: τ ² = 585.58, I ² = 98.74%, H ² = 79.55 Test of θ _i = θ _i : Q(29) = 2842.23, p = 0.00	+	40.11 [31.22,	49.01]

Appendix F. Forest plot for pooled prevalence (farm unit) of *Campylobacter* in different chicken samples in south and southeast Asia

Study		Prevalence with 95% CI
Caecal content		
Anonymous		99.86 [97.06, 102.66
Chokboonmongkol et al., 2013		11.22 [4.97, 17.47
Kalupahana et al., 2018		63.84 [59.79, 67.88
Prachantasena et al., 2017	+	57.01 [52.40, 61.63
Heterogeneity: r ² = 1317.46, I ² = 99.66%, H ² = 294.13	and the second second	58.05 [22.41, 93.70
Test of $\theta_i = \theta_j$: Q(3) = 790.80, p = 0.00		
Cloacal swab		
Ejaz et al., 2004		99.95 [98.97, 100.93
Hasan et al., 2020		40.00 [28.91, 51.09
Hasan et al., 2020		44.44 [11.98, 76.91
Sinulingga et al., 2019		- 85.71 [59.79, 111.64
Heterogeneity: τ ² = 859.37, I ² = 95.85%, H ² = 24.08		68.51 [38.03, 98.99
Test of $\theta_i = \theta_j$: Q(3) = 123.55, p = 0.00		
Mixed		
Kalupahana et al., 2009	-	71.19 [59.63, 82.74
Skin		
Chokboonmongkol et al., 2013		51.02 [41.12, 60.92
Kottawatta et al., 2017		27.45 [18.79, 36.11
Kottawatta et al., 2018		48.00 [28.42, 67.58
Heterogeneity: r ² = 153.23, I ² = 81.64%, H ² = 5.45	-	41.35 [25.52, 57.17
Test of θ _i = θ _j : Q(2) = 13.30, p = 0.00		
	The Manager of SAM	

Random-effects REML model

Appendix G. Forest plot for pooled prevalence (sample unit) of *Campylobacter* in chicken in different study sites in south and southeast Asia

Study		Prevalen with 95%	ce Cl
Farm			
Anonymous, 2009	-	65.00 [57.10,	72.90]
Ejaz et al., 2004		58.10 [55.04,	61.16]
Mohamed-Yousif et al., 2019	-+-	60.40 [50.86,	69.93]
Neogi et al., 2020		42.86 [29.00,	56.71]
Neogi et al., 2020		28.57 [11.84,	45.30]
Padungtod et al., 2005	•	49.63 [45.38,	53.87]
Prachantasena et al., 2017		64.49 [56.51,	72.48]
Prachantasena et al., 2017	•	24.75 [22.09,	27.41]
Rahul et al., 2016	•	11.62 [8.36,	14.89]
Sinulingga et al., 2019	-	50.95 [44.19,	57.71]
Vaishnavi et al., 2014	-	44.88 [36.23,	53.53]
Heterogeneity: $\tau^2 = 297.71$, $I^2 = 97.82\%$, $H^2 = 45.85$ Test of $\theta_i = \theta_j$: Q(10) = 667.15, p = 0.00	•	45.64 [35.13,	56.16]
Hatchery			
Neogi et al., 2020	•	0.00 [-0.11,	0.11]
	1		
Household			
Osbjer et al., 2016	+	56.09 [50.91,	61.27]
Vivekanandhan et al., 2020	+	5.56 [-0.55,	11.67]
Heterogeneity: r ² = 1268.55, l ² = 99.35%, H ² = 152.98		30.85 [-18.67,	80.37]
Test of $\theta_i = \theta_i$: Q(1) = 152.98, p = 0.00			
Restaurant			00 741
Dao et al., 2006		28.33 [16.93,	39.74]
Arshad et al., 2019		50.00 [35.86,	64.14]
Aung et al., 2018		0.00[-0.05,	0.05]
Hussain et al., 2007		47.97 43.55,	52.38]
Heterogeneity: $T' = 538.09$, $T' = 98.88\%$, $H' = 89.19$ Test of $\theta_i = \theta_j$: Q(3) = 525.17, p = 0.00	-	31.16[7.97,	54.35]
Retail outlet			
Huong et al., 2006		31.00 [21.94,	40.06]
Bandekar et al., 2005		+ 95.00 [88.25,	101.75]
Khan et al., 2018		24.00 [17.17,	30.83]
Khan et al., 2019		38.67 [30.87,	46.46]
Khan et al., 2020	(****)	8.00 [0.48,	15.52]
Kottawatta et al., 2019		59.46 [43.64,	75.28]
Raja et al., 2018		0.00 [-0.10,	0.10]
Reddy et al., 2019		22.50 [15.03,	29.97]
Nayak et al., 2005		30.00 [18.40,	41.60]
Heterogeneity: r ² = 800.84, l ² = 98.92%, H ² = 92.45		34.09 [15.36,	52.82]
Test of $\theta_i = \theta_j$: Q(8) = 1065.12, p = 0.00		10	
Super shop			
Nisar et al., 2017	+	29.00 [22.71,	35.29]
Saiyudthong et al., 2015		68.03 [59.76,	76.31]
Sinulingga et al., 2019	27.00 A	- 68.00 [49.71,	86.29]
Vindigni et al., 2007	-	- 69.57 [50.76,	88.37]
Heterogeneity: $\tau^2 = 391.71$, $I^2 = 93.05\%$, $H^2 = 14.38$ Test of $\theta_i = \theta_i$: $Q(3) = 66.85$, $p = 0.00$	-	57.69 [37.12,	78.25]

Random-effects REML model

		Prevalen	ce
Study		with 95%	CI
LBM		10 00 100 01	
Chattopadhyay et al., 2003	-	48.00 [38.21,	57.79]
Ibrahim et al., 2018	+	20.00 [13.37,	26.63]
Kabir et al., 2014		69.44 [54.40,	84.49]
Kabir et al., 2015		50.00 [23.81,	76.19]
Lay et al., 2011	+	80.92 [/4.6/,	87.17]
Mansouri-najand et al., 2012		39.08 [28.83,	49.33]
Mansouri-najand et al., 2012		60.92 [50.67,	71.17]
Neogi et al., 2020	100 million (1997)	51.85 [33.01,	70.70]
Padungtod et al., 2005		38.89 [27.63,	50.15]
Rejab et al., 2012	-	-93.33 [84.41,	102.26]
Salyudthong et al., 2015	+	89.81 [84.11,	95.52]
Samad et al., 2018		32.00 [22.86,	41.14]
Samad et al., 2018		48.00 [38.21,	57.79]
Sharma et al., 2016	22 C	72.00[63.20,	80.80]
Sinulingga et al., 2019	*	14.12 [6.72,	21.52]
Sison et al., 2014	-	47.50 [38.57,	56.43]
Vindigni et al., 2007		37.04 [18.82,	55.25]
Wai et al., 2012		91.23 [83.88,	98.57]
Wai et al., 2012		71.88 [56.30,	87.45]
Bodhidatta et al., 2013		80.00 [67.60,	92.40]
Heterogeneity: 1° = 546.82, 1° = 96.04%, H° = 25.23		56.94 [46.34,	67.53]
Test of $\theta_i = \theta_j$: Q(19) = 671.27, p = 0.00			
Retail outlet			
Huong et al., 2006		31.00 [21.94,	40.06]
Bandekar et al., 2005	-	95.00 [88.25,	101.75]
Khan et al., 2018	+	24.00 [17.17,	30.83]
Khan et al., 2019		38.67 [30.87,	46.46]
Khan et al., 2020	+	8.00 [0.48,	15.52]
Kottawatta et al., 2019		59.46 [43.64,	75.28]
Raja et al., 2018		0.00 [-0.10,	0.10]
Reddy et al., 2019		22.50 [15.03,	29.97]
Nayak et al., 2005		30.00 [18.40,	41.60]
Heterogeneity: r ² = 800.84, l ² = 98.92%, H ² = 92.45	-	34.09 [15.36,	52.82]
Test of $\theta_i = \theta_j$: Q(8) = 1065.12, p = 0.00		2	
Slaughterhouse			
Saba et al., 2013	-	59.58 [53.37,	65.79]
Saba et al., 2013	+	57.08 [50.82,	63.35]
Bao et al., 2006		35.11 [29.87,	40.35]
Garin et al., 2012	+	15.33 [9.57,	21.10]
Geetha, 2013	+	25.45 [17.31,	33.59]
Osiriphun et al., 2011	-	51.25 [44.93,	57.57]
Padungtod et al., 2005		35.62 [24.63,	46.60]
Prachantasena et al., 2017	+	64.18 [58.44,	69.92]
Rajkumar, 2010		14.00 [10.07,	17.93]
Reddy et al., 2019	-	28.15 [20.56,	35.73]
Reddy et al., 2019	-	45.19 [36.79.	53.58]
Rejab et al., 2012	-	60.65 [54.13.	67.16]
Rizal et al., 2016		24.00 [18.71.	29.291
Siddiqui et al., 2015		35.23 [25.25.	45.211
Heterogeneity: τ^2 = 286.28, I ² = 96.53%, H ² = 28.85		39.35 [30.28.	48.41]
Test of $\theta_i = \theta_i$: Q(13) = 473.01, p = 0.00	v		242203

		Prevalence	
Study		with 95%	CI
Mixed			
Malik et al., 2014		32.00 [22.86,	41.14]
Lim et al., 2017		43.90 [28.71,	59.09]
Lim et al., 2017		75.61 [62.46,	88.75]
Lim et al., 2017		85.71 [75.13,	96.30]
Lim et al., 2017		-89.47 [75.67,	103.27]
Lim et al., 2017		97.37 [92.28,	102.46]
Lim et al., 2017		88.10 [78.30,	97.89]
Lim et al., 2017		73.81 [60.51,	87.11]
Singh et al., 2009		14.29 [2.69,	25.88]
Singh et al., 2009	-	11.76 [2.92,	20.61]
Kulasooriya et al., 2019		15.69 [5.71,	25.67]
Kulasooriya et al., 2019		4.35 [-3.99,	12.68]
Heterogeneity: r ² = 1255.08, I ² = 98.09%, H ² = 52.49	-	52.61 [32.31,	72.90]
Test of $\theta_i = \theta_j$: Q(11) = 746.97, p = 0.00		S 1	12
Not mentioned			
Begum et al., 2015		71.05 [56.63,	85.47]
Kumar et al., 2015		46.00 [36.23,	55.77]
Mani et al., 2018	•	7.62 [4.03,	11.21]
Mani et al., 2019	•	3.60 [0.14,	7.07]
Monika et al., 2016	+	13.55 [9.31,	17.78]
Rawat et al., 2018	+	15.52 [8.93,	22.11]
Upadhyay et al., 2016	•	13.55 [9.31,	17.78]
Heterogeneity: τ ² = 554.15, 1 ² = 98.87%, H ² = 88.60 Test of θ _i = θ _i : Q(6) = 141.08, p = 0.00	-	23.75 [6.08,	41.42]

Appendix H. Forest plot for pooled prevalence (farm unit) of *Campylobacter* in chicken in different study sites in south and southeast Asia

udy		Prevaler with 95%	ence % Cl	
Farm				
Anonymous		99.86 [97.06,	102.66]	
Ejaz et al., 2004		99.95 [98.97,	100.93]	
Hasan et al., 2020		40.00 [28.91,	51.09]	
Hasan et al., 2020	(i	44.44 [11.98,	76.91]	
Prachantasena et al., 2017		57.01 [52.40,	61.63]	
Sinulingga et al., 2019		- 85.71 (59.79,	111.64]	
Heterogeneity: τ^2 = 709.44, I^2 = 99.44%, H^2 = 179.45		72.25 [49.93,	94.57]	
Test of $\theta_i = \theta_j$: Q(5) = 436.20, p = 0.00				
LBM				
Kottawatta et al., 2018		48.00 [28.42,	67.58]	
Heterogeneity: r ² = 0.00, I ² = .%, H ² = .				
Test of $\theta_i = \theta_i$: Q(0) = 0.00, p = .				
Mixed				
Kalupahana et al., 2009		71.19 [59.63,	82.74]	
Slaughterhouse				
Chokboonmongkol et al., 2013	-+-	11.22 [4.97,	17.47]	
Chokboonmongkol et al., 2013		51.02 [41.12,	60.92]	
Kalupahana et al., 2018	-	63.84 [59.79,	67.88]	
Kottawatta et al., 2017		27.45 [18.79,	36.11]	
Heterogeneity: τ ² = 549.85, 1 ² = 97.95%, H ² = 48.79		38.41 [15.13,	61.70]	
Test of $\theta_i = \theta_i$: Q(3) = 212.25, p = 0.00				

Random-effects REML model

Appendix I. Forest plot for pooled prevalence (sample unit) of *Campylobacter* according to health status of chicken in south and southeast Asia

01-11		Prevaler	ice
Study Clinically healthy		with 95%	CI
Assessments 2000		RE 00 1 57 40	72 001
Einz et al. 2004	-	59.00 [57.10,	61 161
Costhe 2012		36.10[33.04,	22 501
Menneuri polond et al. 2012	and the second s	20.40 [17.31,	40.221
Mansouri-najand et al., 2012		39.00 [20.03,	49.33]
Nansouri-najand et al., 2012	-	40.92 [50.67,	/ 1.1/] EC 741
Neogi et al., 2020		42.60 [29.00,	30.71]
Neogi et al., 2020		28.57 [11.64,	45.30]
Neogi et al., 2020		51.85[33.01,	10.10]
Neogi et al., 2020		0.00[-0.11,	0.11]
Nisar et al., 2017	-	29.00 [22.71,	35.29]
Osbjer et al., 2016	*	56.09 [50.91,	61.27]
Osiriphun et al., 2011	*	51.25 [44.93,	57.57]
Padungtod et al., 2005	•	49.63 [45.38,	53.87]
Padungtod et al., 2005		35.62 [24.63,	46.60]
Padungtod et al., 2005		38.89 [27.63,	50.15]
Prachantasena et al., 2017		64.49 [56.51,	72.48]
Prachantasena et al., 2017	•	24.75 [22.09,	27.41]
Prachantasena et al., 2017	+	64.18 [58.44,	69.92]
Raja et al., 2018	•	0.00 [-0.10,	0.10]
Rajkumar, 2010	•	14.00 [10.07,	17.93]
Rawat et al., 2018	+	15.52 [8.93,	22.11]
Reddy et al., 2019	-	28.15 [20.56,	35.73]
Reddy et al., 2019		45.19 [36.79,	53.58]
Reddy et al., 2019		22.50 [15.03,	29.97]
Rejab et al., 2012		- 93.33 [84.41,	102.26]
Rejab et al., 2012	+	60.65 [54.13,	67.16]
Rizal et al., 2016	+	24.00 [18.71,	29.29]
Samad et al., 2018	+	32.00 [22.86,	41.14]
Samad et al., 2018		48.00 [38.21,	57.79]
Rahul et al., 2016	•	11.62 [8.36,	14.89]
Sharma et al., 2016		72.00 [63.20,	80.80]
Siddiqui et al., 2015		35.23 [25.25,	45.21]
Singh et al., 2009		14.29 [2.69,	25.88]
Singh et al., 2009	-	11.76 [2.92,	20.61]
Sinulingga et al., 2019	-	50.95 [44.19,	57.71]
Sinulingga et al., 2019		14.12 [6.72,	21.52]
Sinulingga et al., 2019		68.00 [49.71,	86.29]
Sison et al., 2014		47.50 [38.57,	56.43]
Vindigni et al., 2007		37.04 [18.82,	55.25]
Vindigni et al., 2007		69.57 [50.76,	88.371
Vivekanandhan et al., 2020	+	5.56 [-0.55,	11.67]
Wai et al., 2012	-	91.23 [83.88.	98.571
Wai et al., 2012		71.88 [56.30.	87.451
Heterogeneity; 1 ² = 535.88, 1 ² = 99.98%, H ² = 4467.62	٠	40.87 [33.80	47.951
Test of $\theta_i = \theta_i$: Q(42) = 7129.60, p = 0.00	V		

Random-effects REML model

	Prevalence		nce
Study		with 95%	CI
Not mentioned			
Arshad et al., 2019	-	50.00 [35.86,	64.14]
Aung et al., 2018		0.00 [-0.05,	0.05]
Bandekar et al., 2005	-	95.00 [88.25,	101.75]
Bao et al., 2006		35.11 [29.87,	40.35]
Begum et al., 2015		71.05 [56.63,	85.47]
Bodhidatta et al., 2013		80.00 [67.60,	92.40]
Chattopadhyay et al., 2003		48.00 [38.21,	57.79]
Garin et al., 2012	•	15.33 [9.57,	21.10]
Dao et al., 2006		28.33 [16.93,	39.74]
Huong et al., 2006	-	31.00 [21.94,	40.06]
Hussain et al., 2007	-	47.97 [43.55,	52.38]
Ibrahim et al., 2018	+	20.00 [13.37,	26.63]
Kabir et al., 2014		69.44 [54.40,	84.49]
Kabir et al., 2015		50.00 [23.81,	76,19]
Khan et al., 2018	+	24.00 [17.17,	30.83]
Khan et al., 2019		38.67 [30.87,	46.46]
Khan et al., 2020		8.00 0.48,	15.52]
Kottawatta et al., 2019		59.46 [43.64,	75.28]
Kumar et al., 2015		46.00 [36.23,	55.77]
Lay et al., 2011	+	80.92 [74.67,	87.17]
Malik et al., 2014	<u></u>	32.00 [22.86,	41.14]
Mani et al., 2018	•	7.62 4.03,	11.21]
Mani et al., 2019	•	3.60 [0.14,	7.07]
Mohamed-Yousif et al., 2019		60.40 [50.86,	69.93]
Monika et al., 2016	•	13.55 [9.31,	17.78]
Lim et al., 2017		43.90 [28.71,	59.09]
Lim et al., 2017		75.61 [62.46,	88.75]
Lim et al., 2017		85.71 [75.13,	96.30]
Lim et al., 2017	-	89.47 [75.67,	103.27]
Lim et al., 2017	-	97.37 [92.28.	102.46]
Lim et al., 2017		88.10 [78.30,	97.89]
Lim et al., 2017		73.81 [60.51,	87.11]
Saba et al., 2013	-	59.58 [53.37,	65.79]
Saba et al., 2013	+	57.08 [50.82,	63.35]
Saiyudthong et al., 2015	-	68.03 [59.76,	76.31]
Saiyudthong et al., 2015	+	89.81 [84.11,	95.52]
Upadhyay et al., 2016	-	13.55 [9.31,	17.78]
Vaishnavi et al., 2014	-	44.88 [36.23,	53.53]
Kulasooriya et al., 2019		15.69 [5.71,	25.67]
Kulasooriya et al., 2019		4.35 [-3.99.	12.68]
Nayak et al., 2005		30.00 [18.40.	41.60]
Heterogeneity: r ² = 825.47, I ² = 99.24%, H ² = 131.97	٠	47.39 [38.45,	56.32]
Test of $\theta_i = \theta_i$: Q(40) = 7659.49, p = 0.00	05		

Appendix J. Forest plot for pooled prevalence (farm unit) of Campylobacter
according to health status of chicken in south and southeast Asia

Study		Prevalence with 95% CI	
nically healthy			
onymous		99.86 [97.06,	102.66
az et al., 2004		99.95 [98.97,	100.93
san et al., 2020		40.00 [28.91,	51.09
san et al., 2020	· · · · · · · · · · · · · · · · · · ·	44.44 [11.98,	76.91
achantasena et al., 2017		57.01 [52.40,	61.63
ulingga et al., 2019		- 85.71 [59.79,	111.64
terogeneity: r ² = 709.44, l ² = 99.44%, H ² = 179.45		72.25 [49.93,	94.57
st of $\theta_i = \theta_i$: Q(5) = 436.20, p = 0.00			
tmentioned			
okboonmongkol et al., 2013	-	11.22 [4.97,	17.47
okboonmongkol et al., 2013		51.02 [41.12,	60.92
lupahana et al., 2018	-	63.84 [59.79,	67.88
lupahana et al., 2009		71.19 [59.63,	82.74
ttawatta et al., 2017		27.45 [18.79,	36.11
ttawatta et al., 2018		48.00 [28.42,	67.58
terogeneity: τ ² = 503.05, I ² = 96.90%, H ² = 32.31 st of θ _i = θ _j : Q(5) = 229.29, p = 0.00	-	45.25 [26.76,	63.73
t mentioned okboonmongkol et al., 2013 okboonmongkol et al., 2013 lupahana et al., 2018 lupahana et al., 2009 ttawatta et al., 2017 ttawatta et al., 2018 tterogeneity: $r^2 = 503.05$, $I^2 = 96.90\%$, $H^2 = 32.31$ st of $\theta_i = \theta_i$: Q(5) = 229.29, p = 0.00	* * * *	11.22 [4.97, 51.02 [41.12, 63.84 [59.79, 71.19 [59.63, 27.45 [18.79, 48.00 [28.42, 45.25 [26.76,	1 6 8 3 6 6

	0.00	50.00	100.00
ndom-effects REML model			

Study		Prevalence with 95% CI	
Not mentioned			
Arshad et al., 2019		50.00 [35.86,	64.14]
Aung et al., 2018		0.00 [-0.05,	0.05]
Bandekar et al., 2005	-	95.00 [88.25,	101.75]
Bao et al., 2006	+	35.11 [29.87,	40.35]
Begum et al., 2015		71.05 [56.63,	85.47]
Bodhidatta et al., 2013		80.00 [67.60,	92.40]
Chattopadhyay et al., 2003		48.00 [38.21,	57.79]
Dao et al., 2006	+	28.33 [16.93,	39.74]
Kabir et al., 2014		69.44 [54.40,	84.49]
Kabir et al., 2015		50.00 [23.81,	76.19]
Khan et al., 2018	-	24.00 [17.17,	30.83]
Khan et al., 2019		38.67 [30.87,	46.46]
Khan et al., 2020	-	8.00 [0.48,	15.52]
Lay et al., 2011	+	80.92 [74.67,	87.17]
Mani et al., 2018	•	7.62 [4.03,	11.21]
Mani et al., 2019	+	3.60 [0.14,	7.07]
Monika et al., 2016		13.55 [9.31,	17.78]
Rajkumar, 2010	•	14.00 [10.07,	17.93]
Kulasooriya et al., 2019		15.69 [5.71,	25.67]
Kulasooriya et al., 2019		4.35 [-3.99,	12.68]
Nayak et al., 2005		30.00 [18.40,	41.60]
Heterogeneity: $\tau^2 = 830.22$, $I^2 = 99.37\%$, $H^2 = 158.19$ Test of $\theta_i = \theta_j$: Q(20) = 2380.94, p = 0.00	•	36.14 [23.61,	48.67]
broiler breeder			
Prachantasena et al., 2017		64.49 [56.51,	72.48]
Indegenous			
Osbjer et al., 2016	+	56.09 [50.91,	61.27]
Vivekanandhan et al., 2020	-	5.56 [-0.55,	11.67]
Wai et al., 2012		71.88 [56.30,	87.45]
Heterogeneity: τ^2 = 1174.89, I ² = 98.82%, H ² = 84.60 Test of θ_i = θ_j : Q(2) = 173.24, p = 0.00		44.12 [4.90,	83.33]

Appendix K. Forest plot for pooled prevalence (sample unit) of *Campylobacter* in chicken in different production type in south and southeast Asia

Random-effects REML model

Ch.d.	Prevalence		CE
Exotic broiler		With 95%	0
Anonymous 2009		85.00 [57.10	72 901
Fiaz et al. 2004		58 10 [55 04	61 161
Garin et al. 2012	+	15 33 [9 57	21 101
Geetha 2013	-	25 45 [17 31	33 501
Huona et al. 2006		31 00 [21 04	40.061
Hussain et al. 2007		47 07 1 42 55	52 201
Ibrohim et al., 2007		47.87 [43.33,	26.621
Kottowatta at al. 2010	200	20.00 [13.37,	20.03
Kumas at al., 2019		39.40 [43.04,	75.20j
Numar et al., 2015		40.00 [30.23,	35.77
Malik et al., 2014		32.00 [22.86,	41.14]
Mansouri-najand et al., 2012	-	39.08 [28.83,	49.33]
Mansouri-najand et al., 2012		60.92 [50.67,	/1.1/]
Mohamed-Yousif et al., 2019		60.40 [50.86,	69.93]
Neogi et al., 2020		42.86 [29.00,	56.71]
Neogi et al., 2020		28.57 [11.84,	45.30]
Neogi et al., 2020		51.85 [33.01,	70.70]
Neogi et al., 2020	•	0.00 [-0.11,	0.11]
Nisar et al., 2017	-	29.00 [22.71,	35.29]
Osiriphun et al., 2011	+	51.25 [44.93,	57.57]
Lim et al., 2017		43.90 [28.71,	59.09J
Lim et al., 2017		75.61 [62.46,	88.75]
Lim et al., 2017		85.71 [75.13,	96.30]
Lim et al., 2017		89.47 [75.67,	103.27]
Lim et al., 2017		97.37 [92.28,	102.46]
Lim et al., 2017		88.10 [78.30,	97.89]
Lim et al., 2017		73.81 [60.51.	87.11]
Padungtod et al., 2005		49.63 [45.38.	53.871
Padungtod et al., 2005		35.62 [24.63.	46.601
Padungtod et al., 2005		38.89 [27.63.	50.151
Prachantasena et al., 2017		24 75 [22.09.	27.411
Prachantasena et al. 2017	+	64.18 [58.44.	69.921
Raia et al. 2018		0.001-0.10	0 101
Rawat et al. 2018	-	15 52 [8 93	22 111
Reddy et al. 2019	-	28 15 (20 56	35 731
Reddy et al. 2019		45 19 1 36 79	53 581
Reddy et al. 2019		22 50 [15 03	20 071
Reigh et al. 2012		10.02 22 00 1 00.22	102 261
Rejab et al., 2012 Rejab et al., 2012		83.33 [04.41,	67 461
Pizel et al., 2012		00.00 [04.13,	20, 201
Rizal et al., 2010	100	24.00 [10.71,	29.29]
Saba et al., 2013	-	59.58[53.37,	00.79]
Saba et al., 2013	+	57.08 [50.82,	03.35
Salyudthong et al., 2015	-	68.03 [59.76,	76.31]
Salyudthong et al., 2015	*	89.81 [84.11,	95.52]
Samad et al., 2018		32.00 [22.86,	41.14]
Samad et al., 2018		48.00 [38.21,	57.79]
Rahul et al., 2016		11.62 [8.36,	14.89]
Sharma et al., 2016		72.00 [63.20,	80.80]
Siddiqui et al., 2015	100	35.23 [25.25,	45.21]
Singh et al., 2009		14.29 [2.69,	25.88]
Singh et al., 2009		11.76 [2.92,	20.61]
Sinulingga et al., 2019	+	50.95 [44.19,	57.71]
Sinulingga et al., 2019	-	14.12 [6.72,	21.52]
Sinulingga et al., 2019		68.00 [49.71,	86.29]
Sison et al., 2014		47.50 [38.57,	56.43]
Upadhyay et al., 2016		13.55 9.31.	17.78]
Vaishnavi et al., 2014		44.88 [36.23.	53.531
Vindigni et al., 2007		37.04 [18.82.	55.251
Vindigni et al., 2007		69.57 [50.76	88.371
Wai et al., 2012	-	91,23 [83.88	98,571
Heterogeneity: r ² = 608.65, l ² = 99.97%, H ² = 3689.74		46.53 [40.11	52,951
Test of $\theta_i = \theta_i$: Q(58) = 11599.83, p = 0.00			

Appendix L. Forest plot for pooled prevalence (farm unit) of *Campylobacter* in chicken in different production type in south and southeast Asia

udy		Prevalen with 95%		CI
cockerel				
Hasan et al., 2020	· · · · · · · · · · · · · · · · · · ·		44.44 [11.98,	76.91]
exotic broiler				
Anonymous			99.86 [97.06.	102.661
Chokboonmongkol et al., 2013			11.22 [4.97,	17.47]
Chokboonmongkol et al., 2013			51.02 [41.12,	60.92]
Ejaz et al., 2004			99.95 [98.97,	100.93]
Hasan et al., 2020			40.00 [28.91,	51.09]
Kalupahana et al., 2018			63.84 [59.79,	67.88]
Kalupahana et al., 2009			71.19 [59.63,	82.74]
Kottawatta et al., 2017			27.45 [18.79,	36.11]
Kottawatta et al., 2018			48.00 [28.42,	67.58]
Prachantasena et al., 2017	-		57.01 [52.40,	61.63]
Sinulingga et al., 2019			- 85.71 [59.79,	111.64]
Heterogeneity: τ^2 = 797.34, I ² = 99.38%, H ² = 161.21			59.41 [42.37,	76.46]
Test of θ _i = θ _i : Q(10) = 1717.72, p = 0.00				

	0.00	50.00	100.00
Random-effects REML model			

113 | Page

Appendix M. Forest plot for pooled prevalence (sample unit) of non-typhoidal *Salmonella* in chickens across different south and southeast Asian countries

2017/01/2		Prevalence		
Study		with 95%	U	
Bangladesh				
Aditya, 2015	+	36.20 [29.86,	42.54]	
Alam et al., 2020		26.67 [15.48,	37.86]	
Biswas et al, 2005		15.00 [5.97,	24.03]	
Biswas et al., 2006		62.50 [47.50,	77.50]	
Mahmud et al., 2011	+	11.11 [4.62,	17.60]	
Mahmud et al., 2011	•	1.19 [-1.13,	3.51]	
Mridha et al., 2020		65.71 [56.64,	74.79]	
Parvej et al., 2016		6.00 [1.35,	10.65]	
Salauddin et al., 2015	-	82.76 [74.82,	90.70]	
Islam et al., 2018		• 97.87 [95.49,	100.25]	
Heterogeneity: r ² = 1180.70, l ² = 99.47%, H ² = 189.03		40.42 [18.96,	61.88]	
Test of $\theta_i = \theta_j$: Q(9) = 3798.50, p = 0.00				
Bhutan				
Dahal et al., 2008		48.57 [32.01,	65.13]	
Cambodia				
Trongjit et al., 2017		32.00 [19.07,	44.93]	
Trongjit et al., 2017		5.24 [2.22,	8.25]	
Lay et al., 2011		64.71 [54.55,	74.87]	
Trongjit et al., 2014		48.00 [34.15,	61.85]	
Trongjit et al., 2014	+	3.33 [-3.09,	9.76]	
Heterogeneity: r ² = 701.04, l ² = 97.99%, H ² = 49.70	-	30.24 [6.60,	53.88]	
Test of $\theta_i = \theta_j$: Q(4) = 164.42, p = 0.00				

0.00 50.00 100.00 Random-effects REML model

114 | Page

Study		Pi wi	revalen th 95%	ce Cl
India	22	0.001	0.00	0.000
Anukampa et al., 2017		0.00 [-0.00,	0.00]
Anukampa et al., 2018		75.00 [61.58,	88.42]
Anukampa et al., 2019		25.53	13.07,	38.00]
Badhe et al., 2013		16.67	-13.15,	46.49]
Badhe et al., 2013		16.67	-13.15,	46.49]
Das et al., 2012		13.33 [1.17,	25.50]
Deshpande and Gulhane, 2015		20.00 [5.69,	34.31]
Deshpande and Gulhane, 2015		26.67 [10.84,	42.49]
Gautam et al., 2017		28.33 [16.93,	39,74]
Gautam et al., 2017		1.47 [-0.55,	3.49]
Karabasanavar et al., 2007	-] 90.9	1.49,	16.69]
Kaushik et al., 2014	-	67.14 [60.79,	73.50]
Khan et al., 2015		32.86 [21.85,	43.86]
Khan et al., 2015	-+-	78.00 [66.52,	89.48]
Khan et al., 2015] 00.08	35.21,	84.79]
Kumar et al., 2010		7.09[5.65,	8.53]
Latha et al., 2017		6.02 [3.52,	8.51]
Maripandi et al., 2010	-	- 92.50 [84.34,	100.66]
Menghistu et al., 2011		18.67 [9.85,	27.48]
Mir et al., 2010		14.63 [3.82.	25.45]
Mir et al., 2015		39.02 [24.09.	53.961
Murugkar et al., 2005		65.281	54.28.	76.271
Naik et al. 2015		13.00 ľ	9.70.	16.301
Olukemi et al. 2018		37 50 1	20.73	54 271
Patoli et al. 2019		13 46 [4 18	22 741
Public of all 2010		1.60 [-0.20	3 301
Saba at al. 2016	10 mg	12 00 1	0.20,	16 301
Saharan et al. 2010		19:00 [37.05	66 221
Saliaran et al., 2020		0.501	37.33,	7.601
Saikia and Joshi, 2010	-	2.50 [-2.40,	1.52]
Samanta et al., 2019		8.111	1.89,	14.33]
Saravanan et al., 2015	-	8.331	1.34,	15.33]
Saravanan et al., 2015		3.091	1.96,	4.21]
Saravanan et al., 2015	•	6.31[3.96,	8.66]
Saravanan et al., 2015		48.85	42.80,	54.91]
Saravanan et al., 2015		2.52	1.34,	3.70]
Saravanan et al., 2015		1.00 [-0.95,	2.95]
Saravanan et al., 2015	+	23.68 [18.17,	29.20]
Selvaraj et al., 2010	+	17.14 [10.90,	23.39]
Selvaraj et al., 2010] 00.0	-0.00,	0.00]
Selvaraj et al., 2010] 00.0	-0.00,	0.00]
Sharma et al., 2019	•	7.20	4.00,	10.40]
Singh et al., 2013		30.00 [21.02,	38.98]
Srinivasan et al., 2014		1 00.2	0.73,	9.27]
Srinivasan et al., 2014] 00.0	-0.00,	0.00]
Srinivasan et al., 2014		25.00 [16.51,	33.49]
Srinivasan et al., 2014	•	6.58 [6.54,	6.62]
Srinivasan et al., 2014		100.0	-0.00,	0.00]
Srinivasan et al., 2014		88.16 [83.02,	93.29]
Suresh et al., 2011		14.55 [5.23,	23.86]
Suresh et al., 2011		42.50 [27.18,	57.82]
Suresh et al., 2011		17.07 [13.45,	20.68]
Suresh et al., 2011	-	40.231	29.93.	50.53]
Suresh et al., 2011		13.33 [1.17.	25.50]
Suresh et al., 2011		30.431	19.58.	41,291
Survani et al., 2017		15.92 I	12.93.	18,901
Waghamare et al., 2017		12.411	9.28	15.541
Waghamare et al. 2017		2731	0.58	4 881
Yang et al. 2018		57 14 1	20.48	93.801
Munipadas et al. 2015		48 15 [29.30	66 991
Murupadas et al. 2015		45 101	31.44	58 751
Municadas et al. 2015		8.01	4.08	12.841
Municadas et al. 2015	1.00	46.00	37 46	54 731
Municadas et al. 2015		14 72 1	10.15	19 201
Sudhanthirakadi atal 2016		3.501	0.05	6.051
Sudhanthirakadi at al. 2016	1	42.00	35.13	53,671
Hotomospoliu: $r^2 = 527.64$ $r^2 = 100.0001$ $H^2 = 0.00 + 0.07$		43.90 [17.00	30.45
Test of θ _i = θ _i : Q(64) = 117658.99, p = 0.00		23.12	17.98,	28.40]

Study		Prevalence with 95% CI		e Cl
Indonesia		20000000	3027340	an establish
Novera et al., 2020		36.67 [19.42,	53.91]
Wardhana et al., 2019		•100.00 [100.00,	100.00]
Heterogeneity: τ [*] = 1966.85, l [*] = 98.07%, H [*] = 51.82 Test of θ, = θ _j : Q(1) = 51.82, p = 0.00	< C	66.94 [6.89,	131.00]
Malaysia				
Thung et al., 2016		62.50 [47.50,	77.50]
Thung et al., 2016		28.04 [19.53,	36.55]
Goni et al., 2018	+	10.26 [3.52,	16.99]
Auzureen et al., 2015	•	4.24 [2.32,	6.15]
Geidam et al., 2012	1000	42.47 [31.13,	53.80]
Jajere et al., 2019		56.94 [45.51.	68.38]
Nidaullah et al., 2017	-	7.33 [3.16,	11.51]
Shafini et al., 2017		28.00 [15.55,	40.45]
Shafini et al., 2017		30.00 [9.92,	50.08]
Shafini et al., 2017	-	16.67 [3.33,	30.00]
Heterogeneity: $\tau^2 = 381.79$, $t^2 = 97.08\%$, $H^2 = 34.29$ Test of $\theta_i = \theta_j$: Q(9) = 207.99, p = 0.00	•	27.99 (15.36,	40.62]
Myanmar				
Moe et al., 2017		42.86 [31.26,	54.45]
Nepal				
Bantawa et al., 2018		31.11 [23.30.	38.92]
Maharjan et al., 2006	-	21.48 [14.55,	28.41]
Mahato, 2019		40.83 [32.04,	49.63]
Saud et al., 2019		47.86 [42.01,	53.71]
Heterogeneity: $r^2 = 123.06$, $l^2 = 90.09\%$, $H^2 = 10.09$ Test of $\theta_i = \theta_i$: Q(3) = 35.28, p = 0.00		35.36 [23.88,	46.84]
Philippines				
Manguiat et al., 2013	-	72.22 [61.88,	82.57]
Singapore				
Aung et al., 2018		23.33 [8.20,	38.47]
Zwe et al., 2018	-	5.56 [-0.55,	11.67]
Zwe et al., 2018	7	14.89 [9.80,	19.98]
Heterogeneity: $\tau^2 = 43.48$, $t^2 = 75.96\%$, $H^2 = 4.16$ Test of $\theta_i = \theta_j$: $Q(2) = 7.66$, $p = 0.02$	٠	12.96 [4.05,	21.87]
Sri Lanka				
Kulasooriya et al., 2019	•	4.44 [1.43,	7.46]
Kulasooriya et al., 2019		38.00 [28,49,	47.51]
Kulasooriya et al., 2019		46.67 [28.81.	64.52]
Maqdhurangi et al., 2013	-	50.00 [32.11,	67.89]
Heterogeneity: r' = 430.69, l' = 94.50%, H' = 18.19 Test of θ _i = θ _i : Q(3) = 81.64, p = 0.00	-	33.56 [12.18,	54.95]
Vietnam				
Nguyen et al., 2012] 00.0	-0.00,	0.00]
Ellerbroek et al., 2010		2.67 [-0.98,	6.31]
Dao et al., 2006	-	22.00 [10.52,	33.48]
Hanh et al., 2006		40.00 [26.42.	53.58]
Hanh et al., 2006		67.50 [52.99,	82.01]
Huong et al., 2006		30.00 [18.40,	41.60]
Nghiem et al.,2019	-	13.73 [4.28,	23.17]
Ta et al., 2014	1	4.17 [-1.49,	9.82]
Taletal., 2014		0.00 [-0.00,	0.00]
That and Yamaguchi, 2012		18.07 [9.79,	20.35]
Fran et al., 2005	+	42.63	37.21,	48.06]
Van et al., 2007	100	70.00[49.92,	30.08]
Voletai., 2000 Heteroreneity: $x^2 = 677.11$, $t^2 = 100.009$; $tt^2 = 5.64 \pm 0.7$		20.29	14 27	13.15]
Test of 0, = 0; Q(12) = 1275.08, p = 0.00	-	20.00 [14.21,	40.00]

Study	Prevalence with 95% CI			CI
Thailand				
Sinwat et al., 2015		56.67	38.93,	74.40]
Niyomdecha et al., 2016		53.33	35.48,	71.19]
Trongjit et al., 2017		56.67	38.93,	74.40]
Trongjit et al., 2017	-	12.50	2.25,	22.75]
Trongjit et al., 2017		47.22	30.91,	63.53]
Akbar et al., 2013		5.14	2.18,	8.10]
Ananchaipattana et al., 2016		1.40	-0.17,	2.98]
Ananchaipattana et al., 2016	•	6.90	3.41,	10.38]
Angkititrakul et al., 2005	•	5.05	2.00,	8.10]
Bangtrakulnonth et al., 2006	•	4.04	1.30,	6.78]
Bodhidatta et al., 2013		3.74	1.20,	6.28]
Chaisatit et al., 2012	-	25.23	19.41,	31.05]
Chotinun et al., 2014		43.33	25.60,	61.07]
Chotinun et al., 2014	-	49.26	43.30,	55.22]
Mathew et al., 2009		42.57	34.60,	50.53]
Minami et al., 2010	+	21.00	15.36,	26.64]
Minami et al., 2010	+	11.11	4.62,	17.60]
Neunchat et al., 2017		65.71	56.64,	74.79]
Niyomdecha et al., 2016	•	6.00	1.35,	10.65]
Padungtod et al., 2006		82.76	74.82,	90.70]
Padungtod et al., 2006		24.59	19.19,	29.99]
Padungtod et al., 2006		- 96.43	92.46,	100.40]
Prasertsee et al., 2019		53.33	35.48,	71.19]
Prasertsee et al., 2019		62.00	48.55,	75.45]
Prasertsee et al., 2019		25.00	0.50,	49.50]
Reddy et al., 2019		16.67	-13.15,	46.49]
Reddy et al., 2019		18.33	8.54,	28.12]
Reddy et al., 2019	+	18.00	12.68,	23.32]
Sripaurya et al., 2019		34.00	20.87,	47.13]
Trongjit et al., 2014		50.00	36.14,	63.86]
Trongjit et al., 2014		25.00	17.25,	32.75]
Vadhanasin et al., 2004	+	12.67	7.34,	17.99]
Vaeteewootacharn et al., 2005	-	5.33	0.25,	10.42]
Vindigni et al., 2007		2.90	-1.06,	6.86]
Lertworapreecha et al., 2013		0.00	-0.00,	0.00]
Heterogeneity: $\tau^2 = 631.39$, $I^2 = 99.55\%$, $H^2 = 221.26$ Test of $\theta_i = \theta_i$: Q(34) = 4033.95, p = 0.00	•	29.39	20.85,	37.92]

Study		Prevalence with 95% CI
Pakistan		With 35 /6 Of
Akhtar et al., 2009		6.28 [2.98, 9.59]
Akbar and Anal, 2015		0.55 [-0.53, 1.63]
Asif et al., 2017	1 •	6.82 [2.52, 11.12]
Asif et al., 2017		13.17 [8.54, 17.80]
Asif et al., 2017		5.06 [1.64, 8.48]
Asif et al., 2017		4.72 [1.03, 8.41]
Khan et al., 2019		9.58 [5.86, 13.31]
Khan et al., 2020	•	4.00 [0.86, 7.14]
Khan et al., 2021		72.50 [62.72, 82.28]
Khan et al., 2022		20.00 [12.52, 27.48]
Khan et al., 2023		24.00 [15.63, 32.37]
Mallhi et al., 2019		28.00 [19.20, 36.80]
Sajid et al., 2015		33.00 [26.48, 39.52]
Sajid et al., 2015		15.00 [3.93, 26.07]
Sajid et al., 2015		4.76 [-4.35, 13.87]
Sajid et al., 2015		4.81 [0.70, 8.92]
Sajid et al., 2015		2.08 [-0.77, 4.94]
Sajid et al., 2015	200 A	1.94 [-0.72, 4.61]
Samad et al., 2018		0.00 [-0.00, 0.00]
Samad et al., 2018	+	3.51 [-1.27, 8.29]
Samad et al., 2018		0.00 [-0.00, 0.00]
Soomro et al., 2010	-	8.57 [2.01, 15.13]
Yasmin et al., 2020	-	5.26 [-1.84, 12.36]
Yasmin et al., 2020	+	5.00 [-0.51, 10.51]
Wajid et al., 2018		8.00 [-2.63, 18.63]
Heterogeneity: $\tau^2 = 208.74$, $I^2 = 100.00\%$, $H^2 = 8.70e+06$ Test of $\theta_i = \theta_j$: Q(24) = 542.95, p = 0.00	٠	11.12 [5.33, 16.91]

Appendix N. Forest plot for pooled prevalence (sample unit) of non-typhoidal *Salmonella* in eggs across different south and southeast Asian countries

Study		P	revalen ith 95%	ci
Bangladesh				
Fardows and Shamsuzzaman, 2015	1000	50.00 [15.35,	84.65]
Hardows and Shamsuzzaman, 2015		12.50	-10.42,	35.42
Heterogeneity: T = 4/8.52, T = 68.06%, H = 3.13		28.91 J	-7.55,	65.37]
Test of $\theta_i = \theta_j$, $\omega_i(1) = 5.15$, $\beta = 0.08$				
India				
Anukampa et al., 2020		5.56	-5.03,	16.14]
Anukampa et al., 2020		5.56 [-5.03,	16,14]
Das et al., 2012	100	24.00 [7.26,	40.74]
Karabasanavar et al., 2007	•	3.00 [-0.34,	6.34]
Khan et al., 2015		0.00	-0.00,	0.00]
Menghistu et al., 2011	•	2.50	-2.34,	7.34]
Patoli et al., 2019		- 70.00 [41.60,	98.40]
Saravanan et al., 2015		0.00 [-0.00,	0.00]
Selvaraj et al., 2010		5.88	-5.30,	17.07]
Singh et al., 2010		2.69	0.72,	4.66]
Singh et al., 2010		0.77	-0.29,	1.83]
Singh et al., 2010		0.67 [-0.25,	1.59]
Singh et al., 2010	•	2.33 [0.63,	4.04]
Singh et al., 2013	•	3.33	0.71,	5.96]
Suresh et al., 2006		1.83 [0.65,	3.01]
Suresh et al., 2006	•	6.10	3.98,	8.21]
Murugadas et al., 2015		4.62	-0.49,	9.72]
Sudhanthirakodi et al., 2016		0.00	-0.00,	0.00]
Heterogeneity: 1" = 2.99, I" = 100.00%, H" = 351628.71		2.03	0.97,	3.10]
Test of $\theta_i = \theta_j$: Q(17) = 107.38, p = 0.00				
Malaysia				
Jajere et al., 2019		0.00	-0.00,	0.00]
Kit et al., 2015	+	3.70	-3.42,	10.83]
Kit et al., 2015		3.70	-3.42,	10.83]
Heterogeneity: r ² = 2.03, l ² = 23.49%, H ² = 1.31		0.78	-1.70,	3.26]
Test of $\theta_i = \theta_j$: Q(2) = 2.08, p = 0.35				
Pakistan				
Akhtar et al., 2009		40.00 [31.23.	48,771
Akhtar et al., 2009		8.331	3.39,	13.28]
Sajid et al., 2015		9.65	5.82,	13.48]
Heterogeneity: r ² = 300.70, l ² = 97.55%, H ² = 40.79		19.00	-0.94,	38.95]
Test of $\theta_i = \theta_j$: Q(2) = 42.66, p = 0.00				
Sri Lanka				
Kaluaphana et al., 2016	+	12.00	5.63,	18.37]
Kaluaphana et al., 2016	•	3.00 [-0.34,	6.34]
Kalupahana et al., 2017	-	- 80.00 [59.76,	100.24]
Kalupahana et al., 2017		20.00 [-0.24,	40.24]
Heterogeneity: r ² = 1111.37, l ² = 98.51%, H ² = 67.21		27.83	-5.63,	61.29]
Test of $\theta_i = \theta_j$: Q(3) = 59.39, p = 0.00				
Thailand				
Neunchat et al., 2017	•	2.23	0.79,	3.67]
Puangburee et al.,2016		20.00 [2.47,	37.53]
Utrarachkij et al., 2012		0.00 [-0.00,	0.00]
Utrarachkij et al., 2012		0.00 [-0.00,	0.00]
Utrarachkij et al., 2012		26.67	10.84,	42.49]
Utrarachkij et al., 2012		0.00	-0.00,	0.00]
Vindigni et al., 2007	-	14.00 [4.38,	23.62]
Heterogeneiity: $r^2 = 61.83$, $l^2 = 100.00\%$, $H^2 = 2.06e+07$ Test of $\theta_i = \theta_i$: Q(6) = 33.25, p = 0.00	٠	6.03 [-0.46,	12.52]

Random-effects REML model

Appendix O. Forest plot for pooled prevalence (sample unit) of non-typhoidal

Salmonella in different chicken samples in south and southeast Asia

Study		Pr	evalenc h 95% (e Cl
RTE meat	· .	0.001	0.50	4.001
Selevidie et al. 2015		0.001	-0.53,	1.03
Salauddin et al., 2015		0.001	-0.00,	0.001
Test of $\theta_i = \theta_i$: Q(1) = 1.01, p = 0.32		0.00 [-0.06,	0.06]
dead embryo				
Jajere et al., 2019	•	6.31 [3.96,	8.66]
heart				
Karabasanavar et al., 2007		13.33 [1.17,	25.50]
Kaushik et al., 2014	1	6.82 [2.52,	11.12]
Heterogeneity: r ² = 0.00, l ² = 0.00%, H ² = 1.00	•	7.54 [3.49,	11.60]
Test of $\theta_i = \theta_i$: Q(1) = 0.98, p = 0.32				
ovary	14	0.501	5.00	40.041
Diduested at al. 2006		9.58 [0.77	13.31]
Padungtod et al., 2006	5. C.	2.08 [-0.77.	4.94]
Padungtod et al., 2006		0.001	33.48,	0.001
Haterogeneity: $x^2 = 524.97$ $1^2 = 00.63\%$ $1^2 = 266.91$		14.061	-0.00,	27 841
Test of $\theta_i = \theta_i$: Q(3) = 61.77, p = 0.00	-	14.00 [-7.31,	51.04]
oviduct				
Parvej et al., 2016	0.00	56.67 [38.93,	74.40]
processed meat				
Patoli et al., 2019		16.67 [-13.15,	46.49]
Prasertsee et al., 2019	•	2.56 [-2.40,	7.52]
Prasertsee et al., 2019	-	28.00 [19.20,	36.80]
Prasertsee et al., 2019	+	5.56 [-0.55,	11.67]
Reddy et al., 2019	-	4.17 [-1.49,	9.82]
Heterogeneity: r ² = 106.94, l ² = 89.34%, H ² = 9.38 Test of θ _i = θ _j : Q(4) = 26.51, p = 0.00	•	10.19 (-0.01,	20.39]
skin				
Kulasooriya et al., 2019		13.00 [9.70,	16.30]
Kulasooriya et al., 2019	-	31.11 [23.30,	38.92]
Kulasooriya et al., 2019	-	5.14 [2.18,	8.10]
Heterogeneity: τ ^z = 163.16, l ^z = 97.51%, H ^z = 40.12 Test of θ _i = θ _i : Q(2) = 41.54, p = 0.00	•	16.04 [1.29,	30.79]
spleen				
Maqdhurangi et al., 2013		5.06 [1.64,	8.48]
Vo et al., 2006] 00.0	-0.00,	0.00]
Islam et al., 2018		50.00 [32.11,	67.89]
Heterogeneity: $r^{z} = 673.41$, $l^{z} = 99.57\%$, $H^{z} = 230.43$ Test of $\theta_{i} = \theta_{j}$: Q(2) = 38.43, p = 0.00	-	17.17 [-12.77,	47.11]
yolk				
Wajid et al., 2018		4.76 [-4.35,	13.87]

Random-effects REML model

Study		Prevalence with 95% CI		e Cl
caecal		0.000		
Akbar and Anal, 2015	+	17.14 [10.90,	23.39]
Sinwat et al., 2015		8.91 [4.98,	12.84]
Thung et al., 2016		72.50[62.72	82.28]
Thung et al., 2016		5.05 [2.00,	8.10]
Anonymous		18.00 [12.68,	23.321
Heterogeneity: r ² = 724.96, I ² = 99.17%, H ² = 119.88		24.06	0.30.	47.82]
Test of $\theta_i = \theta_j$; Q(4) = 176.66, p = 0.00	•	132/1102	10000	0.2540.27
carcass				
Trongiit et al., 2017		1.19[-1.13.	3.51]
Trongit et al., 2017	-	65.711	56.64.	74,791
Trongiit et al., 2017	-	82.761	74.82.	90,701
Trongit et al. 2017	·	48.57	32.01.	65,131
Trongilt et al., 2017		39.021	24.09	53,961
Moe et al. 2017		13.00 [9.70	16.301
Goni et al. 2018		88.16 [83.02	93 291
Artitua 2015		+ 100 00 F	100.00	100 001
Akbar at al. 2013	-	100.001	32.04	40.631
Akhtor et al. 2010		43.331	25.60	61.071
Alam at al. 2009		40.00 [43.00,	55 221
Agenchelectron et al. 2016		49.20 [43.30,	74 701
Ananchaipattana et al., 2016		00.711	20.04,	74.79]
Ananchaipattana et al., 2016		82.76	74.82,	90.70]
Angkititrakul et al., 2005	-	42.63	37.21,	48.06]
Heterogeneity: 1" = 805.83, I" = 99.54%, H" = 219.21 Test of θ _i = θ _i : Q(13) = 10836.73, p = 0.00	•	54.59 [39.51,	69.67]
cloacal swab				
Anukampa et al. 2017		48.001	34.15	61 851
Anukamna et al. 2018		14 63 [3.82	25 451
Anukampa et al. 2019		1.601	-0.20	3 301
Asif at al. 2017		8 111	1.90	14 331
Asifetal 2017		2 62 1	1.34	3 701
Abilistal, 2017		0.001	0.00	0.001
Asil et al. 2017	1. A	7 20 /	4.00	10.401
Asiretal., 2017		17.071	4.00,	10.40]
Aung et al., 2016		17.071	13.45,	20.08]
Auzureen et al., 2015		12.41	9.28,	15.54]
Badhe et al., 2013	-	46.09 [37.46,	54.73]
Badhe et al., 2013	•	14.72[10.15,	19.29]
Bangtrakulnonth et al., 2006	and a second second	4.24	2.32,	6.15]
Bantawa et al., 2018	-	42.47	31.13,	53.80]
Biswas et al, 2005	•	7.33 [3.16,	11.51]
Biswas et al., 2006		15.00 [3.93,	26.07]
Bodhidatta et al., 2013	•	4.44 [1.43,	7.46]
Chaisatit et al., 2012		56.67 [38.93,	74.40]
Chotinun et al., 2014		12.50 [2.25,	22.75]
Chotinun et al., 2014		1.40 [-0.17,	2.98]
Nguyen et al., 2012		25.00 [0.50,	49.50)
Dahal et al., 2008		16.67 [-13.15,	46.49]
Das et al., 2012		5.33 [0.25,	10.42]
Deshpande and Gulhane, 2015		22.00 [10.52,	33.48]
Heterogeneity: $r^2 = 219.42$, $l^2 = 99.44\%$, $H^2 = 179.21$ Test of $B = B$; $O(22) = 566.53$, $o = 0.00$	•	15.59 [9.21,	21.97]
cooked meat				
Deshpande and Gulhane, 2015	+	3.331	-3.09.	9.761
Ellerbroek et al. 2010		16.67 [-13.15.	46,491
Gautam et al. 2017		1 47 1	-0.55	3 4 91
Gautam et al. 2017		1 90.9	1 49	16 691
Geidam et al. 2012		0.001	-0.00	0.001
Dag et al. 2006	10 million (10 mil	30.425	19.59	41 201
Hanh at al. 2006		29.041	10.00,	36 553
Hanh et al. 2000	12	20.04 [10.00	0.001
Halmetal., 2000		0.00[-0.00,	[00.0
reterogeneity: τ = 142.00, τ = 100.00%, H = 2.03e+07 Test of θ _i = θ _i : Q(7) = 81.64, p = 0.00		9.97 [1,08,	18.85]
crop				
Huong et al., 2006	•	6.90 [3.41,	10.38]

Study		Prevalence with 95% Cl
NM Novera et al., 2020		6.58 [6.54, 6.62]
intestine		
Khan et al., 2015	-	30.00 [21.02, 38.98]
Khan et al., 2015		45.10 [31.44, 58.75]
Khan et al., 2015	-	21.48 [14.55, 28.41]
Khan tal., 2019	•	1.94 [-0.72, 4.01]
Khan tal. 2019		A 04 [1 30 6 78]
Khan tal. 2019		50 00 [36 14 63 86]
Khan tal. 2019		100 0 00 0-100 0
Heterogeneity: τ^2 = 364.43, I^2 = 99.26%, H^2 = 135.95 Test of $\theta_i = \theta_i$: Q(7) = 184.17, p = 0.00	٠	18.87 [5.32, 32.41]
kidney		
Kumar et al., 2010		20.00 [5.69, 34.31]
Latha et al., 2017		0.00 [-0.00, 0.00]
Lay et al., 2011	1	4.72 [1.03, 8.41]
Heterogeneity: $\tau^{*} = 56.57$, $1^{*} = 94.45\%$, $H^{*} = 18.02$ Test of $\theta_{i} = \theta_{j}$: Q(2) = 13.80, p = 0.00	•	6.00 [-3.40, 15.41]
liver		
Maharjan et al., 2006		26.67 [10.84, 42.49]
Mahato, 2019		13.46 [4.18, 22.74]
Mahmud et al., 2011	-	5.00 [0.73, 9.27]
Mahmud et al., 2011	-	13.17 [8.54, 17.80]
Mallhi et al., 2019	•	4.81 [0.70, 8.92]
Mariaandi et al., 2013		46.67 [28.81, 64.52]
Mathow et al., 2010	-	200 [106 6 86]
Heterogeneity: $\tau^2 = 186.35$, $I^2 = 95.27\%$, $H^2 = 21.15$ Test of $\theta_i = \theta_i$: Q(7) = 55.13, p = 0.00	٠	16.59 [6.50, 26.68]
lungs Menchistu et al. 2011		6 28 [2 08 0 50]
Heterogeneity: $r^2 = 0.00$ $l^2 = \%$ $H^2 =$	Ā	6 28 [2 98 9 59]
Test of $\theta_i = \theta_i$: Q(0) = 0.00, p = .	1	0.20 [2.30, 3.33]
mixed		7 00 1 5 65 9 521
Minami et al., 2010		7.09 [5.05, 8.53]
Minami et al., 2010 Mir et al., 2010		3.00 [1.06 .4.21]
Mir et al. 2015		40 23 [29 93 50 53]
Mridha et al. 2020	1.0	273 [0.58, 4.88]
Murugkar et al., 2005	-	20.00 [12.52, 27.48]
Naik et al., 2015	-	3.51 [-1.27, 8.29]
Neunchat et al., 2017	-	5.00 [-0.51, 10.51]
Nghiem et al.,2019	•	25.23 [19.41, 31.05]
Nidaullah et al., 2017		70.29 [65.44, 75.15]
Heterogeneity: τ^2 = 479.02, I^2 = 99.63%, H^2 = 269.63 Test of θ_i = θ_j : Q(9) = 805.60, p = 0.00	•	18.16 [4.50, 31.83]
mouth	1920	0.741.4.00.0.001
Nyomdecha et al., 2016	1.2.1	3.74 [1.20, 6.28]

Study		Prevale with 95	ince % Cl
raw meat			
Reddy et al., 2019	+	36.20 [29.86	6, 42.54]
Reddy et al., 2019		26.67 [15.48	3, 37.86]
Ruban and Fairoze, 2011	+	15.00 [5.97	, 24.03]
Sajid et al., 2015		62.50 [47.50	, 77.50]
Sajid et al., 2015		11.11 4.63	2, 17.60]
Sajid et al., 2015	•	6.00 [1.38	5, 10.65]
Sajid et al., 2015		• 97.87 [95.49	9, 100.25]
Sajid et al., 2015		32.00 [19.07	, 44.93]
Sajid et al., 2015	(5.24 [2.22	2, 8.25
Saha et al., 2016	-	64./1[54.58	0, 74.87]
Saharan et al., 2020		75.00[61.58	5, 88.42]
Saikia and Joshi, 2010		25.53 [13.0]	, 38.00]
Samad et al., 2018	5	28.33 [10.94), 39.(4) 39.601
Samad et al., 2018	-	67.14 [60.75	43.50j
Samad et al., 2016		32.00 [21.00	0, 40.00
Samanta et al., 2019		78.00 [66.5	69.48
Saravanari et al., 2015		02.001.35.2	, 04./3]
Saravanan et al., 2015		92.50 [64.34	, 100.66j
Satavanan et al., 2015	100	10.07 0.00	 ∠ℓ.48] 20.031
Saravanan et al., 2015	and a start of the	00.28 [04.20	5, 70.27]
Saravanan et al., 2015		57.50 [20.71	5, 34.27] : 00.271
Saravanan et al., 2015	2012	0.00[01.90	0, 00.22j
Saravanari et al., 2010		10.05 110.04	, 10.33j
Saud et al., 2019		48.85 [42.80), 54.91j
Selvaraj et al., 2010	1	1.00 [-0.95	o, 2.90j
Selvaraj et al., 2010		23.68 [18.17	, 29.201
Selvaraj et al., 2010		0.00] 00.0	0, 0.00]
Shafini et al., 2017	-	25.00 [16.5	1, 33,49]
Shatini et al., 2017		14.55 5.23	3, 23.86]
Shatini et al., 2017		42.50 [27.18	s, 67.82j
Sharma et al., 2019		13.33 [1.17	, 25.50]
Singh et al., 2013		15.92 [12.93	s, 18.90j
Soomro et al., 2010		57.14 [20.48	8, 93.80]
Srinivasan et al., 2014		48.15 [29.30	0, 66.99]
Srinivasan et al., 2014		3.50 0.95	5, 6.05]
Srinivasan et al., 2014		43.90 [35.13	3, 52.67]
Srinivasan et al., 2014		36.67 [19.42	2, 53.91]
Srinivasan et al., 2014		62.50 [47.50), 77.50]
Srinivasan et al., 2014		10.26 [3.52	2, 16.99]
Sripaurya et al., 2019		56.94 [45.5	, 68.38]
Suresh et al., 2011		28.00 [15.58	5, 40.45]
Suresh et al., 2011		30.00 [9.92	2, 50.08]
Suresh et al., 2011		16.67 [3.33	3, 30.00]
Suresh et al., 2011		42.86 [31.26	5, 54.45]
Suresh et al., 2011		47.86 [42.0	, 53.71]
Suresh et al., 2011		4.00 0.86	6, 7.14]
Suryani et al., 2017	-	24.00 [15.63	3, 32.37]
Ta et al., 2014	-	33.00 [26.48	3, 39.52]
Ta et al., 2014		0.00 [-0.00	0, 0.00]
Thai and Yamaguchi, 2012	+	8.57 [2.0	1, 15.13]
Tran et al., 2005		8.00 [-2.63	3, 18.63]
Trongit et al., 2014		72.22 [61.88	3, 82.57]
Trongit et al., 2014		23.33 [8.20), 38.47]
Trongjit et al., 2014		14.89 [9.80), 19.98]
Trongjit et al., 2014		38.00 [28.49	9, 47.51]
Vadhanasin et al., 2004		47.22 [30.91	63.53]
Vaeteewootacham et al., 2005		42.57 [34.60), 50.53]
Van et al., 2007	+	21.00 [15.36	8, 26.64]
Vindigni et al., 2007		11.11 [4.63	2, 17.60]
Waghamare et al., 2017		6.00 [1.38	5, 10.65]
Waghamare et al., 2017	+	24.59 [19.15	0, 29.99]
Wardhana et al., 2019		+ 96.43 [92.46	5, 100,40]
Yang et al., 2018		53.33 [35.48	3, 71,19]
Yasmin et al., 2020		62.00 [48.58	5, 75.45]
Yasmin et al., 2020	+	18.33 [8.54	, 28.12]
Zwe et al., 2018	-+-	25.00 [17.25	5, 32.75]
Zwe et al., 2018	+	12.67 [7.34	, 17.99
Murugadas et al., 2015		2.67 [-0.98	8, 6.31]
Murugadas et al., 2015		40.00 [26.42	2, 53.58]
Murugadas et al., 2015		67.50 [52.99	82.01]
Murugadas et al., 2015		30.00 [18.40), 41.60]
Murugadas et al., 2015		13.73 [4.28	3, 23.17]
Sudhanthirakodi et al., 2016		18.07 [9.79	9, 26.35]
Sudhanthirakodi et al., 2016		70.00 [49.92	2, 90.08]
Heterogeneity: 1 ² = 598.69, 1 ² = 100.00%, H ² = 8.20e+06		34.03 [28.3	, 39.76]
Test of $\theta_i = \theta_i$: Q(73) = 13046.92, p = 0.00			

Appendix P. Forest plot for pooled prevalence (sample unit) of non-typhoidal *Salmonella* in different egg samples in south and southeast Asia

Study		Pr	revalen th 95%	ce Cl
Boiled egg				
Anukampa et al., 2020	+	5.56 [-5.03,	16.14]
Egg				
Anukampa et al., 2020	-+-	5.56 [-5.03,	16.14]
Das et al., 2012		24.00 [7.26,	40.74]
Jajere et al., 2019		0.00 [-0.00,	0.00]
Karabasanavar et al., 2007	-	3.00 [-0.34,	6.34]
Kit et al., 2015	-	3.70 [-3.42,	10.83]
Kit et al., 2015	-	3.70 [-3.42,	10.83]
Menghistu et al., 2011		2.50 [-2.34,	7.34]
Sajid et al., 2015		9.65 [5.82,	13.48]
Saravanan et al., 2015] 00.0	-0.00,	0.00]
Vindigni et al., 2007	1. 	14.00 [4.38,	23.62]
Heterogeneity: τ^2 = 15.12, I^2 = 100.00%, H^2 = 1.68e+06 Test of $\theta_i = \theta_j$: Q(9) = 47.64, p = 0.00	+	4.33 [1.30,	7.37]
Egg content				
Kaluaphana et al., 2016	•	3.00 [-0.34,	6.34]
Akhtar et al., 2009		8.33 [3.39,	13.28]
Fardows and Shamsuzzaman, 2015	\rightarrow	12.50 [-10.42,	35.42]
Kalupahana et al., 2017		20.00 [-0.24,	40.24]
Khan et al., 2015	•	0.00 [-0.00,	0.00]
Puangburee et al.,2016		20.00 [2.47,	37.53]
Singh et al., 2010		2.69 [0.72,	4.66]
Singh et al., 2010		0.67 [-0.25,	1.59]
Singh et al., 2013	•	3.33 [0.71,	5.96]
Suresh et al., 2006		1.83 [0.65,	3.01]
Utrarachkij et al., 2012	•	0.00 [-0.00,	0.00]
Utrarachkij et al., 2012	•	0.00 [-0.00,	0.00]
Murugadas et al., 2015	-	4.62 [-0.49,	9.72]
Sudhanthirakodi et al., 2016		0.00 [-0.00,	0.00]
Heterogeneity: $\tau^2 = 2.06$, $I^2 = 100.00\%$, $H^2 = 474405.52$ Test of $\theta_i = \theta_j$: Q(13) = 51.62, p = 0.00		1.41 [0.41,	2.41]
Egg shell		21.2223	12032	1012/000
Kaluaphana et al., 2016	-	12.00 [5.63,	18.37]
Akhtar et al., 2009		40.00 [31.23,	48.77]
Fardows and Shamsuzzaman, 2015		- 50.00 [15.35,	84.65]
Kalupahana et al., 2017	-		59.76,	100.24]
Neunchat et al., 2017		2.23 [0.79,	3.67]
Patoli et al., 2019	-	70.00 [41.60,	98.40]
Selvaraj et al., 2010		5.88 [-5.30,	17.07]
Singh et al., 2010		0.77 [-0.29,	1.83]
Singh et al., 2010	÷.	2.33 [0.63,	4.04]
Suresh et al., 2006		6.10[3.98,	8.21]
Utrarachkij et al., 2012		0.00 [-0.00,	0.00]
Utrarachkij et al., 2012		26.67 [10.84,	42.49]
Heterogeneity: $\tau^{*} = 671.49$, $l^{2} = 99.89\%$, $H^{2} = 934.35$ Test of $\theta_{l} = \theta_{l}$: Q(11) = 247.28, p = 0.00	-	22.34 [7.11,	37.56]

Random-effects REML model

		Prevalence
Study		with 95% CI
LBM		
Deshpande and Gulhane, 2015		26.67 [15.48, 37.86]
Ellerbroek et al., 2010		65.71 [56.64, 74.79]
Gautam et al., 2017	1	82.76 [74.82, 90.70]
Gautam et al., 2017		48.57 [32.01, 65.13]
Geidam et al., 2012		32.00 [19.07, 44.93]
Dao et al., 2006	-	5.24 [2.22, 8.25]
Hanh et al., 2006		48.85 [42.80, 54.91]
Hanh et al., 2006		30.00 [21.02, 38.98]
Huong et al., 2006	-8-	5.00 [0.73, 9.27]
Jajere et al., 2019		0.00 [-0.00, 0.00]
Karabasanavar et al., 2007		25.00 [16.51, 33.49]
Kaushik et al., 2014		36.67 [19.42, 53.91]
Khan et al., 2015		56.94 [45.51, 68.38]
Khan et al., 2015		42.86 [31.26, 54.45]
Khan et al., 2015		47.22 [30.91, 63.53]
Khan et al., 2019		49.26 [43.30, 55.22]
Khan et al., 2019		65.71 [56.64, 74.79]
Khan et al., 2019		82.76 [74.82, 90.70]
Khan et al., 2019	_	18.33 [8.54, 28.12]
Khan et al., 2019		25.00 [17.25, 32.75]
Kumar et al., 2010	4	30.00 [18.40, 41.60]
Latha et al., 2017		70.00 [49.92, 90.08]
Heterogeneity: τ ² = 556.86, I ² = 98.72%, H ² = 78.31		40.34 [30.22, 50.47]
Test of $\theta_i = \theta_i$: Q(21) = 2244.70, p = 0.00		
Supershop		
Sudhanthirakodi et al., 2016		0.55 [-0.53, 1.63]
Lertworapreecha et al., 2013		15.00 [5.97, 24.03]
Salauddin et al., 2015		0.00 [-0.00, 0.00]
Kulasooriya et al., 2019		18.67 [9.85, 27.48]
Kulasooriya et al., 2019		52.08 [37.95, 66.22]
Kulasooriya et al., 2019		2.56 [-2.40, 7.52]
Maqdhurangi et al., 2013	-	57.14 [20.48, 93.80]
Vo et al., 2006		30.00 [9.92, 50.08]
Islam et al., 2018	·	43.33 [25.60, 61.07]
Wajid et al., 2018		12.67 [7.34, 17.99]
Heterogeneity: τ ² = 340.23, I ² = 99.65%, H ² = 282.73	-	20.33 [8.13, 32.54]
Test of $\theta_i = \theta_j$: Q(9) = 144.61, p = 0.00	2020	

Appendix Q. Forest plot for pooled prevalence (sample unit) of non-typhoidal *Salmonella* in chickens in different study sites in south and southeast Asia

0.00 50.00 100.00 Random-effects REML model

Study		Prevalence with 95% Cl
Farm		
Akbar and Anal. 2015		48.00 [34.15, 61.85]
Sinwat et al., 2015		13.46 [4.18, 22.74]
Thung et al., 2016		1.60 [-0.20, 3.39]
Thung et al., 2016		8.11 [1.89, 14.33]
Anonymous		3.09 [1.96, 4.21]
Trongiit et al., 2017		6.31 [3.96, 8.66]
Trongjit et al., 2017		2.52 [1.34, 3.70]
Trongjit et al., 2017		17.14 [10.90, 23.39]
Trongjit et al., 2017		0.00 [-0.00, 0.00]
Trongjit et al., 2017		0.00 [-0.00, 0.00]
Moe et al., 2017		7.20 [4.00, 10.40]
Goni et al., 2018		6.58 [6.54, 6.62]
Aditya, 2015	-	17.07 [13.45, 20.68]
Akbar et al., 2013		40.23 [29.93, 50.53]
Akhtar et al., 2009	+	12.41 [9.28, 15.54]
Alam et al., 2020	·•	45.10 [31.44, 58.75]
Ananchaipattana et al., 2016	1 1	46.09 [37.46, 54.73]
Ananchaipattana et al., 2016		14.72 [10.15, 19.29]
Angkititrakul et al., 2005	· •	4.24 [2.32, 6.15]
Anukampa et al., 2017		7.33 [3.16, 11.51]
Anukampa et al., 2018		4.76 [-4.35, 13.87]
Anukampa et al., 2019	-	4.81 [0.70, 8.92]
Asif et al., 2017	*	2.08 [-0.77, 4.94]
Asif et al., 2017		1.94 [-0.72, 4.61]
Asif et al., 2017		0.00 [-0.00, 0.00]
Asif et al., 2017		3.51 [-1.27, 8.29]
Aung et al., 2018		0.00 [-0.00, 0.00]
Auzureen et al., 2015		4.44 [1.43, 7.46]
Badhe et al., 2013		46.67 [28.81, 64.52]
Badhe et al., 2013		50.00 [32.11, 67.89]
Bangtrakulnonth et al., 2006		56.67 [38.93, 74.40]
Bantawa et al., 2018		53.33 [35.48, 71.19]
Biswas et al, 2005	×	56.67 [38.93, 74.40]
Biswas et al., 2006		12.50 [2.25, 22.75]
Bodhidatta et al., 2013		25.00 [0.50, 49.50]
Chaisatit et al., 2012		22.00 [10.52, 33.48]
Chotinun et al., 2014	-	70.29 [65.44, 75.15]
Heterogeneity: τ^2 = 392.63, I^2 = 100.00%, H^2 = 3.28e+07	•	18.29 [11.73, 24.84]
Test of $\theta_i = \theta_j$: Q(36) = 115008.99, p = 0.00		

0.00 50.00

100.00

Random-effects REML model

Study		Prevalence with 95% CI		
Restaurant		077770	110000000000	54.)
Naik et al., 2015		3.33 [-3.09,	9.76]
Neunchat et al., 2017		25.53 [13.07,	38.00]
Nghiem et al.,2019		16.67 [-	13.15,	46.49]
Nidaullah et al., 2017	<u></u>	16.67 [-	13.15,	46.49]
Niyomdecha et al., 2016		1.47 [-0.55,	3.49]
Novera et al., 2020		9.09 [1.49,	16.69]
Olukemi et al.,2018		8.33 [1.34,	15.33]
Padungtod et al., 2006		0.00 [-0.00,	0.00]
Padungtod et al., 2006		30.43 [19.58,	41.29]
Padungtod et al., 2006		28.04 [19.53,	36.55]
Parvej et al., 2016		0.00 [-0.00,	0.00]
Heterogeneity: $r^2 = 123.45$, $I^2 = 100.00\%$, $H^2 = 1.23e+07$	•	11.30 [3.97,	18.63]
Test of $\theta_i = \theta_i$: Q(10) = 104.41, p = 0.00				
Slaughterhouse				
Trongjit et al., 2014	·	36.20 [29.86,	42.54]
Trongjit et al., 2014		11.11 [4.62,	17.60]
Trongjit et al., 2014		1.19 [-1.13,	3.51]
Vadhanasin et al., 2004		6.00 [1.35,	10.65]
Vaeteewootacharn et al., 2005		32.86 [21.85,	43.86]
Van et al., 2007		14.63 [3.82,	25.45]
Vindigni et al., 2007		39.02 [24.09,	53.96]
Waghamare et al., 2017		65.28 [54.28,	76.27]
Waghamare et al., 2017		37.50 [20.73,	54.27]
Wardhana et al., 2019		8.91 [4.98,	12.84]
Yang et al., 2018		= 100.00 [1	00.00,	100.00]
Yasmin et al., 2020		42.47 [31.13,	53.80]
Yasmin et al., 2020		31.11 [23.30,	38.92]
Zwe et al., 2018		21.48 [14.55,	28.41]
Zwe et al., 2018		47.86 [42.01,	53.71]
Murugadas et al., 2015		11.11 [4.62,	17.60]
Murugadas et al., 2015		6.00 [1.35,	10.65]
Murugadas et al., 2015		24.59 [19.19,	29.99]
Murugadas et al., 2015		16.67 [-	13.15,	46.49]
Murugadas et al., 2015		18.00 [12.68,	23.32]
Sudhanthirakodi et al., 2016		42.63 [37.21,	48.06]
Heterogeneity: τ^2 = 542.98, I ² = 99.24%, H ² = 131.84	-	29.31 [19.11,	39.50]
Test of $\theta_i = \theta_j$: Q(20) = 17852.57, p = 0.00				

0.00 50.00

100.00

Study		Prevalence with 95% CI		
Retail outlet		With 90 %	G	
Patoli et al., 2019		62.50 [47.50,	77.501	
Prasertsee et al., 2019		• 97.87 [95.49.	100.251	
Prasertsee et al., 2019		75.00 [61.58.	88,421	
Prasertsee et al., 2019		13.33 1.17.	25.501	
Reddy et al., 2019		20.00 5.69.	34.311	
Reddy et al., 2019		26.67 [10.84.	42.49]	
Reddy et al., 2019		28.33 [16.93.	39,741	
Ruban and Fairoze, 2011	-	67.14 [60.79.	73.501	
Sajid et al., 2015		60.00 [35.21.	84.791	
Sajid et al., 2015	-	- 92.50 [84.34.	100.661	
Sajid et al., 2015		13.00 [9.70.	16.30]	
Saiid et al., 2015		1.00 [-0.95.	2.95]	
Sajid et al., 2015		23.68 [18.17.	29.201	
Sajid et al., 2015		88.16 83.02.	93.291	
Saha et al., 2016		14.55 5.23.	23.861	
Saharan et al., 2020		42.50 [27.18.	57.821	
Salkia and Joshi. 2010		13.33 [1.17.	25,501	
Samad et al., 2018		15.92 [12.93.	18.901	
Samad et al., 2018		48 15 [29 30.	66,991	
Samad et al., 2018		3.50 [0.95.	6.051	
Samanta et al. 2019		43.90 [35.13.	52.671	
Sarayanan et al. 2015		62 50 [47 50	77.501	
Saravanan et al. 2015	+	10.26[3.52	16 991	
Saravanan et al. 2015		28 00 15 55	40 451	
Saravanan et al. 2015		16 67 [3 33	30.001	
Saravanan et al. 2015		40 83 132 04	49 631	
Saravanan et al. 2015		4 00 [0.86	7 141	
Saravanan et al. 2015		72 50 1 62 72	82 281	
Saud et al. 2019	-	20.00 [12.52	27.481	
Selvarai et al. 2010	+	24.00 [15.63	32 371	
Selvaraj et al. 2010		28.00 [19.20.	36.801	
Selvaraj et al. 2010	-	33 00 [26 48	39 521	
Shafini et al. 2017	+	8 57 [2 01	15 131	
Shafini et al. 2017	+	5 26 [-1.84	12 361	
Shafini et al. 2017	+	5 00 [-0.51.	10 511	
Sharma et al. 2019	-	8 00 [-2 63	18.63]	
Singh et al. 2013		14.89[9.80.	19 981	
Soomro et al. 2010		38 00 [28 49	47 511	
Srinivasan et al. 2014		5.14 [2.18	8,101	
Srinivasan et al. 2014		1.401-0.17	2 981	
Srinivasan et al. 2014		6.90[3.41	10.381	
Srinivasan et al. 2014		5.051 2.00	8 101	
Srinivasan et al. 2014		4 04 1 1 30	6,781	
Srinivasan et al. 2014		3.74 [1.20.	6.281	
Srinaurva et al. 2019	-	25 23 [19 41	31 051	
Suresh et al. 2011	+	42 57 [34 60	50.531	
Suresh et al. 2011		21 00 [15 36	26 641	
Suresh et al. 2011		5331 0.25	10 421	
Suresh et al. 2011		2 90 [-1 06	6.861	
Suresh et al. 2011		0.00 -1.00.0	0.001	
Suresh et al. 2011		0.00.1.00.0	0.001	
Surveni et al. 2017		2671-0.00	6 311	
Ta et al. 2014	-	40.00 [26.42	53 591	
Teletel 2014		67 50 1 52 00	82 011	
Thai and Yamaguchi 2012		13 73 1 4 29	23 171	
Tran et al. 2005	-	4 17 [4.20,	0.821	
Trongiit et al. 2014		18.07 [0.70	26 251	
Heteropeoeity: $r^2 = 657.62$ $l^2 = 100.00\%$ $H^2 = 1.176+07$		26.62110.95	33 381	
Teet of A = A: O(56) = 10350.87 n = 0.00		20.02 [10.00,	00.00]	

ıdy		Prevalence with 95% CI		
NM				
Mir et al., 2015		64.71 [54.55,	74.87]	
Mridha et al., 2020	3 	34.00 [20.87,	47.13]	
Murugkar et al., 2005		50.00 [36.14,	63.86]	
Heterogeneity: τ^2 = 204.24, I ² = 83.84%, H ² = 6.19		49.95 [32.26,	67.64]	
Test of $\theta_i = \theta_j$: Q(2) = 13.30, p = 0.00				
Mixed sites				
Lay et al., 2011		78.00 [66.52,	89.48]	
Maharjan et al., 2006		6.28 [2.98,	9.59]	
Mahato, 2019		6.82 [2.52,	11.12]	
Mahmud et al., 2011		13.17 [8.54,	17.80]	
Mahmud et al., 2011	-	5.06 [1.64,	8.48]	
Mallhi et al., 2019	-	4.72 [1.03,	8.41]	
Manguiat et al., 2013		9.58 [5.86,	13.31]	
Maripandi et al., 2010		72.22 [61.88,	82.57]	
Mathew et al., 2009		23.33 [8.20,	38.47]	
Menghistu et al., 2011		5.56 [-0.55,	11.67]	
Minami et al., 2010		96.43 [92.46,	100.40]	
Minami et al., 2010		53.33 [35.48,	71.19]	
Mir et al., 2010		62.00 [48.55,	75.45]	
Heterogeneity: r^2 = 1122.91, I^2 = 99.42%, H^2 = 172.39		33.29 [14.90,	51.68]	
Test of $\theta_i = \theta_i$: Q(12) = 1972.37, p = 0.00				

0.00 50.00 100.00

129 | Page

Appendix R. Forest plot for pooled prevalence (sample unit) of non-typhoidal

Salmonella in egg in different study sites in south and southeast Asia

Study	with 95% CI			
LBM Kantal 2015		3 70 1	-3.42	10.83
Kitetal. 2015	+	3.701	-3.42	10.83
Heterogeneity: $t^2 = 0.00$, $t^2 = 0.00\%$, $H^2 = 1.00$		3.70 (-1.33	8.74
Test of $\theta_i = \theta_i$: Q(1) = 0.00, p = 1.00		0.101		
NM				
Akhtar et al., 2009		40.00 [31.23,	48.77
Akhtar et al., 2009		8.33 [3.39,	13.28
Heterogeneity: 1" = 488.21, I" = 97.37%, H" = 38.03 Test of 0, = 0; Q(1) = 38.03, p = 0.00	-	23.95 [-7.08,	54,98
Farm				
Fardows and Shamsuzzaman, 2015		50.00 [15.35,	84.65
Jajere et al., 2019		0.00 [-0.00,	0.00
Khan et al., 2015		1 00.0	-0.00,	0.00
Saravanan et al., 2015		0.00 I	-0.00,	0.00
Singh et al., 2010		2.69 [0.72,	4.66
Singh et al., 2010		0.77[-0.29,	1.83
Singh et al., 2013		3.331	0.71,	5.90
Utrarachkij et al., 2012	÷	0.001	-0.00,	0.00
Heteropoolsky z ² = 0.00 J ² = 0.000 J ² = 4.00		0.00	-0.00,	0.00
Test of $\theta_i = \theta_i$: Q(8) = 23.42, p = 0.00		0.001	-0.00,	0.00
Hatcehry		2003	200	
Sajid et al., 2015	•	9.65 [5.82,	13,48
Mixed				
Vindigni et al., 2007	+	14.00 [4.38,	23.62
Restaurant				
Anukampa et al., 2020		5.56 [-5.03.	16.14
Anukampa et al., 2020		5.56 [-5.03,	16,14
Puangburee et al.,2016		20.00 [2.47,	37.53
Heterogeneity: τ ² = 0.00, 1 ² = 0.00%, H ² = 1.00	•	7.78 [0.90,	14.66
Test of $\theta_i = \theta_i$: $Q(2) = 2.21$, $p = 0.33$		115017		
Retail outlet				
Kaluaphana et al., 2016	+	12.00 I	5,63,	18,37
Kaluaphana et al., 2016		3.00 [-0.34,	6.34
Das et al., 2012		24.00 [7.26,	40.74
Fardows and Shamsuzzaman, 2015		12,50 [-10.42,	35.42
Kalupahana et al., 2017		- 80.00 [59.76,	100.24
Kalupahana et al., 2017	the second second	20.00 [-0.24,	40.24
Karabasanavar et al., 2007		3.00 [-0.34,	6.34
Menghistu et al., 2011		2.50 [-2.34,	7.34
Neunchat et al., 2017		2.23	0.79,	3.67
Patoli et al., 2019		- 70.00 [41.60,	98.40
Selvaraj et al., 2010		5.88 [-5.30,	17.07
Singh et al., 2010		0.67 [-0.25,	1.59
Singh et al., 2010	S	2.33	0.63,	4.04
Suresh et al., 2006		1.83	0.65,	3.01
Suresh et al., 2006	No. of Concession	0.10	3,98,	42.40
Unaractivij et al., 2012		26.67	10.84	42.49
orarachoj et al., 2012		0.001	-0.00,	0.00
Murugadas et al., 2015 Codescellar de et al. 2017		4.62	-0.49	9.72
Sudhaninifakodi etal., 2016		0.00 [-0.00,	0.00
Heterogeneny: T = 316.34, T = 100.00%, H = 1.76e+07 Test of 6 = 6; Q(18) = 191.59, p = 0.00		12.19	3.79,	20.58
Overall		8.98 [4.68,	13.28
Heterogeneity: 1 ² = 155.70, 1 ² = 100.00%, H ² = 2.60e+07				

Random-effects REML model
Appendix S. Forest plot for pooled prevalence (sample unit) of non-typhoidal

Study		with 95% CI
Clinically healthy		With 5578 Of
Akbar and Anal. 2015		32.00 [19.07, 44.93]
Sinwat et al., 2015		7.20 [4.00, 10,40]
Thung et al., 2016		30.00 [21.02, 38.98]
Thung et al. 2016		5.00 [0.73, 9.27]
Nivomdecha et al. 2016		100.0 .00.0-100.0
Trongiit et al., 2017		25.00 [16.51, 33.49]
Trongiit et al., 2017		17.07 [13.45, 20.68]
Trongiit et al. 2017		7.33 [3.16, 11.51]
Trongiit et al. 2017		15.00 [3.93, 26.07]
Trongiit et al., 2017		12.50 [2.25, 22.75]
Moe et al., 2017		70.00 [49.92, 90.08]
Heterogeneity: τ^2 = 265.50, I^2 = 98.57%, H^2 = 70.07 Test of $\theta_i = \theta_i$: Q(10) = 281.30, p = 0.00	•	18.63 [8.62, 28.64]
Dead		
Goni et al., 2018		7.09 [5.65, 8.53]
Aditya, 2015		6.02 [3.52, 8.51]
Akbar et al., 2013		6.31 [3.96, 8.66]
Akhtar et al., 2009	-	40.23 [29.93, 50.53]
Alam et al., 2020		2.73 [0.58, 4.88]
Ananchaipattana et al., 2016		45.10 [31.44, 58.75]
Ananchaipattana et al., 2016		4.76 [-4.35, 13.87]
Angkititrakul et al., 2005	•	4.81 [0.70, 8.92]
Anukampa et al., 2017		2.08 [-0.77, 4.94]
Anukampa et al., 2018		1.94 [-0.72, 4.61]
Anukampa et al., 2019		0.00 [-0.00, 0.00]
Asif et al., 2017	-	3.51 [-1.27, 8.29]
Asif et al., 2017		46.67 [28.81, 64.52]
Asif et al., 2017		50.00 [32.11, 67.89]
Asif et al., 2017		56.67 [38.93, 74.40]
Aung et al., 2018	11 (m) (m)	53.33 [35.48, 71.19]
Auzureen et al., 2015		56.67 [38.93, 74.40]
Heterogeneity: r ² = 495.25, I ² = 99.71%, H ² = 346.22		21.40 [10.52, 32.28]
Test of $\theta_i = \theta_i$: Q(16) = 431.81, p = 0.00		
Sick		
Vo et al., 2006	1.0	6.58 [6.54, 6.62]
Islam et al., 2018	•	14.72 [10.15, 19.29]
Wajid et al., 2018		70.29 [65.44, 75.15]

Salmonella according to health status of chickens in south and southeast Asia

104 -

Heterogeneity: τ^2 = 1196.99, I² = 99.76%, H² = 416.14 Test of $\theta_i = \theta_i$: Q(2) = 673.06, p = 0.00

0.00 50.00 100.00

Random-effects REML model

30.49 [-8.73, 69.70]

Destrate	-	a diffe	050/	01
Plevale	nce	WILLI	90.70	-

NM
Badhe et al., 2013
Badhe et al., 2013
Bangtrakulnonth et al., 2006
Bantawa et al., 2018
Biswas et al, 2005
Biswas et al., 2006
Bodhidatta et al., 2013
Chaisatit et al., 2012
Chotinun et al., 2014
Chotinun et al., 2014
Nguyen et al., 2012
Dahal et al., 2008
Das et al., 2012
Deshpande and Gulhane, 2015
Deshpande and Gulhane, 2015
Ellerbroek et al., 2010
Gautam et al., 2017
Gautam et al., 2017
Geidam et al., 2012
Dao et al., 2006
Hanh et al., 2006
Hanh et al., 2006
Huong et al., 2006
Jajere et al., 2019
Karabasanavar et al., 2007
Kaushik et al., 2014
Khan et al., 2015
Khan et al., 2015
Khan et al., 2015
Khan t al., 2019
Kumar et al., 2010
Latha et al., 2017
Lay et al., 2011

Study

	0.55 [-0.53,	1.63]
-	36.20 [29.86,	42.54]
	26.67 [15.48,	37.86]
-	15.00 [5.97,	24.03]
	62.50 [47.50,	77.50]
	11.11 [4.62,	17.60]
	1.19 [-1.13,	3.51]
	65.71 [56.64,	74.79]
	6.00 [1.35,	10.65]
	82.76 [74.82,	90.70]
	97.87 [95.49,	100.25]
	48.57 [32.01,	65.13]
	5.24 [2.22,	8.25]
	64.71 [54.55,	74.87
	48.00 [34.15,	61.85]
	3.33 [-3.09,	9.76]
] 00.0	-0.00,	0.00]
	75.00 [61.58,	88.42]
	25.53 [13.07,	38.00]
	16.67 [-13.15,	46.49]
	16.67 [-13.15,	46.49]
	13.33 [1.17,	25.50]
	20.00 [5.69,	34.31]
	26.67 [10.84,	42.49]
	28.33 [16.93,	39.74]
	1.47 [-0.55,	3.49]
	9.09 [1.49,	16.69]
	67.14 [60.79,	73.50]
	32.86 [21.85,	43.86]
	78.00 [66.52,	89.48]
	60.00 [35.21,	84.79]
	92.50 [84.34,	100.66]
	18.67 [9.85,	27.48]
	14.63 [3.82,	25.45]
	39.02 [24.09,	53.96]
	65.28 [54.28,	76.27]
•	13.00 [9.70,	16.30]

Maharjan et al., 2006 Mahato, 2019 Mahmud et al., 2011 Mahmud et al., 2011 Mallhi et al., 2019 Manguiat et al., 2013 Maripandi et al., 2010 Mathew et al., 2009 Menghistu et al., 2011 Minami et al., 2010 Minami et al., 2010 Mir et al., 2010 Mir et al., 2015 Mridha et al., 2020 Murugkar et al., 2005 Naik et al., 2015 Neunchat et al., 2017 Nghiem et al.,2019 Nidaullah et al., 2017 Niyomdecha et al., 2016 Novera et al., 2020 Olukemi et al.,2018 Padungtod et al., 2006 Padungtod et al., 2006 Padungtod et al., 2006 Parvej et al., 2016 Patoli et al., 2019 Prasertsee et al., 2019 Prasertsee et al., 2019 Prasertsee et al., 2019 Reddy et al., 2019 Reddy et al., 2019 Reddy et al., 2019 Ruban and Fairoze, 2011 Sajid et al., 2015 Saha et al., 2016 Saharan et al., 2020 Saikia and Joshi, 2010 Samad et al., 2018 Samad et al., 2018 Samad et al., 2018

	37.50 [20.73,	54.27]
-	13.46 [4,18,	22.74]
	1.60 [-0.20,	3.39]
	13.00 [9.70,	16.30]
	52.08 [37.95,	66.22]
	2.56 [-2.40,	7.52]
	8.11[1.89,	14.33]
	8.33 [1.34,	15.33]
	3.09 [1.96,	4.21]
	48.85 [42.80,	54.91]
	2.52 [1.34,	3.70]
	1.00 [-0.95,	2.95]
-	23.68 [18.17,	29.20]
-8-	17.14 [10.90,	23.39]
	1 00.0	-0.00,	0.00]
	1 00.0	-0.00,	0.00]
-	1 00.0	-0.00,	0.00]
-	88.16 [83.02,	93.29]
	14.55 [5.23,	23.86]
	42.50 [27.18,	57.82]
	13.33 [1.17,	25.50]
	30.43 [19.58,	41.29]
	15.92 [12.93.	18.90)
	12.41 [9.28,	15.54]
	57.14 [20.48.	93.80]
	48.15 [29.30,	66.99]
	8.91 [4.98,	12.84]
	46.09 [37.46,	54.73]
	3.50 [0.95,	6.05]
	43.90 [35.13,	52.67]
	36.67 [19.42,	53.91]
	100.00 [100.00,	100.00]
	62.50 [47.50,	77.50]
	28.04 [19.53,	36.55]
	10.26 [3.52,	16.99]
	4.24 [2.32,	6.15]
	42.47 [31.13,	53.80]
	56.94 [45.51,	68.38]
	28.00 [15.55,	40.45]
	30.00 [9.92,	50.08]
	16.67 [3.33,	30.00]
	42.86 [31.26,	54.45]
	31.11 [23.30,	38.92]
-	21.48 [14.55,	28.41]
	40.83 [32.04,	49.63]
	47.86 [42.01,	53.71]

Samanta et al., 2019 Saravanan et al., 2015 Saud et al., 2019 Selvaraj et al., 2010 Selvaraj et al., 2010 Selvaraj et al., 2010 Shafini et al., 2017 Shafini et al., 2017 Shafini et al., 2017 Sharma et al., 2019 Singh et al., 2013 Soomro et al., 2010 Srinivasan et al., 2014 Sripaurya et al., 2019 Suresh et al., 2011 Suryani et al., 2017 Ta et al., 2014 Ta et al., 2014 Thai and Yamaguchi, 2012 Tran et al., 2005 Trongjit et al., 2014 Trongit et al., 2014 Trongjit et al., 2014 Trongjit et al., 2014 Vadhanasin et al., 2004 Vaeteewootacharn et al., 2005 Van et al., 2007 Vindigni et al., 2007 Waghamare et al., 2017 Waghamare et al., 2017 Wardhana et al., 2019 Yang et al., 2018 Yasmin et al., 2020 Yasmin et al., 2020

Zwe et al., 2018		12.67 [7.34,	17.99]
Zwe et al., 2018		5.33 [0.25,	10.42]
Murugadas et al., 2015		2.90 [-1.06,	6.86]
Murugadas et al., 2015] 00.0	-0.00,	0.00]
Murugadas et al., 2015		1 00.0	-0.00,	0.00]
Murugadas et al., 2015		2.67 [-0.98,	6.31]
Murugadas et al., 2015		22.00 [10.52,	33.48]
Sudhanthirakodi et al., 2016		40.00 [26.42	53.58]
Sudhanthirakodi et al., 2016		67.50 [52.99,	82.01]
Lertworapreecha et al., 2013		30.00 [18.40,	41.60]
Salauddin et al., 2015		13.73 [4.28,	23.17]
Kulasooriya et al., 2019	-	4.17 [-1.49,	9.82]
Kulasooriya et al., 2019] 00.0	-0.00,	0.00]
Kulasooriya et al., 2019	-8-	18.07 [9.79,	26.35]
Maqdhurangi et al., 2013	-	42.63 [37.21,	48.06]
Heterogeneity: $\tau^2 = 616.60$, $I^2 = 100.00\%$, $H^2 = 3.36e+07$		27.07 [22.99,	31.16]
Test of $\theta_i = \theta_i$: Q(147) = 8.89e+09, p = 0.00				

0.00 50.00 100.00

Study		Prevalence with 95% CI
RIR		
Islam et al., 2018	+	15.00 [3.93, 26.07]
Breeder		
Akbar and Anal, 2015		3.09 [1.96, 4.21]
Sinwat et al., 2015		6.31 [3.96, 8.66]
Heterogeneity: r ² = 4.31, l ² = 83.02%, H ² = 5.89	+	4.53 [1.39, 7.67]
Exotic layer		
Bantawa et al., 2018		13.46 4.18, 22.74
Biswas et al, 2005	3.0.1	1.60 [-0.20, 3.39]
Biswas et al., 2006	-	17.14 [10.90, 23.39]
Bodhidatta et al., 2013		0.00 [-0.00, 0.00]
Chaisatit et al., 2012		0.00 [-0.00, 0.00]
Chotinun et al., 2014		4.76 [-4.35, 13.87]
Chotinun et al., 2014	•	4.81 [0.70, 8.92]
Nguyen et al., 2012	•	2.08 [-0.77, 4.94]
Dahal et al., 2008		1.94 [-0.72, 4.61]
Das et al., 2012		0.00 [-0.00, 0.00]
Deshpande and Gulhane, 2015	•	3.51 [-1.27, 8.29]
Deshpande and Gulhane, 2015		0.00 [-0.00, 0.00]
Ellerbroek et al., 2010	•	4.44 [1.43, 7.46]
Gautam et al., 2017		46.67 [28.81, 64.52]
Gautam et al., 2017		50.00 [32.11, 67.89]
Geidam et al., 2012		56.67 [38.93, 74.40]
Dao et al., 2006		53.33 [35.48, 71.19]
Hanh et al., 2006		56.67 [38.93, 74.40]
Hanh et al., 2006		12.50 [2.25, 22.75]
Heterogeneity: $\tau^2 = 402.26$, $I^2 = 100.00\%$, $H^2 = 6.70e+07$ Test of $\theta_i = \theta_j$: Q(18) = 235.64, p = 0.00	•	15.77 [6.48, 25.05]
Hybrid broiler		
Huong et al., 2006		7.09 [5.65, 8.53]
Sonali		
Wajid et al., 2018		6.02 [3.52, 8.51

Appendix T. Forest plot for pooled prevalence (sample unit) of non-typhoidal

Salmonella in chickens in different production type in south and southeast Asia

Study		Prevalence with 95% (ce Cl
Exotic broiler			
Thung et al., 2016		36.20 [29.86.	42.54]
Thung et al., 2016		32.00 [19.07.	44.93]
Niyomdecha et al., 2016		13.33 [1.17,	25.50]
Trongjit et al., 2017		20.00 [5.69,	34.31]
Trongjit et al., 2017		26.67 [10.84,	42.49]
Trongjit et al., 2017		28.33 [16.93,	39.74]
Trongjit et al., 2017	+	13.00 [9.70,	16.30]
Trongjit et al., 2017		6.58 [6.54,	6.62]
Moe et al., 2017		12.41 [9.28,	15.54]
Goni et al., 2018		46.09 [37.46,	54.73]
Aditya, 2015		31.11 [23.30,	38.92]
Akbar et al., 2013		21.48 [14.55,	28.41]
Akhtar et al., 2009		40.83 [32.04,	49.63]
Alam et al., 2020	-	5.14 [2.18,	8.10]
Ananchaipattana et al., 2016		1.40 [-0.17,	2.98]
Ananchaipattana et al., 2016	+	6.90 [3.41,	10.38]
Angkititrakul et al., 2005	+	5.05 [2.00,	8.10]
Anukampa et al., 2017		4.04 [1.30,	6.78]
Anukampa et al., 2018	-	3.74 [1.20,	6.28]
Anukampa et al., 2019		43.33 [25.60,	61.07]
Asif et al., 2017		49.26 [43.30,	55.22]
Asif et al., 2017		11.11 [4.62,	17.60]
Asif et al., 2017		65.71 [56.64,	74.79]
Asif et al., 2017		6.00 [1.35,	10.65]
Aung et al., 2018		82.76 [74.82,	90.70]
Auzureen et al., 2015	+	24.59 [19.19,	29.99]
Badhe et al., 2013		18.00 [12.68,	23.32]
Badhe et al., 2013		30.00 [18.40,	41.60]
Bangtrakulnonth et al., 2006		70.00 [49.92,	90.08]
Heterogeneity: τ^2 = 429.95, I ² = 99.44%, H ² = 179.57	•	25.48 [17.75,	33.20]
Test of θ _i = θ _j : Q(28) = 1243.42, p = 0.00			

Random-effects REML model

0.00

50.00

100.00

NM 0.55 -0.53 1.63 Jajere et al., 2019 + 26.67 15.48, 37.86 Karabsanavar et al., 2014 + 15.00 5.97, 24.03 Khan et al., 2015 + 11.11 4.62, 17.60 Khan et al., 2015 + 11.11 4.62, 17.60 Khan et al., 2015 + 11.11 4.62, 17.60 Khan tal., 2019 + 65.71 56.46, 74.79 Khan tal., 2019 + 82.76 74.82, 07.01 Khan tal., 2019 + 82.76 74.82, 07.01 Khan tal., 2019 + 82.76 74.82, 07.01 Khan tal., 2019 + 48.57 52.41 52.21, 07.01 Kumar et al., 2010 - 52.47 52.21, 07.01 65.71 Kumar et al., 2011 + 48.07 78.67 74.87 Mahato, 2019 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Study		Prevalence with 95% CI		
Jajere et al., 2019 Karabasanavar et al., 2007 Karabasanavar et al., 2007 Kabasanavar et al., 2014 Karabasanavar et al., 2014 Kana et al., 2015 Khan et al., 2019 Khan et al., 2010 Khan et al., 2011 Khan et al., 2010 Khan et al., 2011 Khan et al., 2010 Khan et al.,	NM			<u>1</u>	
Karabasanavar et al., 2007	Jajere et al., 2019	• 0.	55 [-0.53	, 1.63]	
Kaushik et al., 2014 + 15.00 [5.97, 24.03] Khan et al., 2015 - 62.50 [4.75, 77.50] Khan et al., 2015 + 11.19 [-1.13, 3.51] Khan tal., 2019 + 66.71 [56.64, 74.79] Khan tal., 2019 + 65.71 [56.64, 74.79] Khan tal., 2019 + 65.71 [56.64, 74.79] Khan tal., 2019 + 82.76 [74.82, 90.70] Khan tal., 2019 + 82.76 [74.82, 90.70] Khan tal., 2019 - 48.77 [32.01, 65.13] Kumar et al., 2010 - 5.24 [22.2, 8.25] Latha et al., 2011 - 48.00 [34.15, 61.85] Maharjan et al., 2010 - 61.71 [51.55, 74.87] Mahmud et al., 2011 - 75.00 [61.58, 88.42] Mahmud et al., 2011 - 75.00 [61.58, 88.42] Manguiat et al., 2013 - 16.67 [-13.15, 46.49] Maripandi et al., 2010 - 14.7 [-0.55, 3.49] Maripandi et al., 2010 - 16.67 [-13.15, 46.49] Mir et al., 2010 - 16.67 [-13.15, 46.49] Mir et al., 2010 - 16.67 [-13.15, 46.49] Mir et al.,	Karabasanavar et al., 2007	26.	67 [15.48	, 37.86]	
Khan et al., 2015	Kaushik et al., 2014	15.	00 [5.97	, 24.03]	
Khan et al., 2015 + 11.11 [4.62, 17.60] Khan et al., 2015 - 1.19 [-1.13, 3.51] Khan tal., 2019 - 6.00 [1.35, 10.65] Khan tal., 2019 - 6.00 [1.35, 10.65] Khan tal., 2019 - 82.76 [74.82, 90.70] Khan tal., 2019 - 48.57 [32.01, 65.13] Kumar et al., 2010 - 5.24 [2.22, 8.25] Lath et al., 2017 - 64.71 [54.55, 74.87] Lath et al., 2010 - 0.00 [0.00, 0.00] Mahato, 2019 - 0.00 [0.00, 0.00] Mahmud et al., 2011 - 75.00 [61.58, 84.42] Manpuid et al., 2010 - 1.667 [-13.15, 46.49] Manpuid et al., 2010 - 1.667 [-13.15, 46.49] Maripandi et al., 2010 - 1.47 [60.52, 89.48] Minami et al., 2010 - 77.50 [80.62] Mir at al., 2010 - 78.00 [65.28, 94.81] Mir et al., 2015 - 9.02 [24.09, 53.96]	Khan et al., 2015	62.	50 [47.50	, 77.50]	
Khan et al., 2015 • 1.19 [-1.13, 3.51] Khan tal., 2019 + 65.71 [56.64, 74.79] Khan tal., 2019 + 65.71 [56.64, 74.79] Khan tal., 2019 + 82.76 [74.82, 90.70] Khan tal., 2019 + 82.76 [74.82, 90.70] Khan tal., 2010 - 5.24 [22.2, 8.25] Latha et al., 2010 - 5.24 [22.2, 8.25] Latha et al., 2017 + 64.71 [54.55, 74.87] Lay et al., 2011 - 75.00 [61.58, 88.42] Mahato, 2019 - 0.00 [-0.00, 0.00] Mahmud et al., 2011 - 75.00 [61.58, 88.42] Maripandi et al., 2010 - 1.47 [-0.55, 3.49] Maripandi et al., 2010 - 1.47 [-0.55, 3.49] Maripandi et al., 2010 - 1.47 [-0.55, 3.49] Minari et al., 2010 - 7.14 [6 0.79, 7.350] Minari et al., 2010 - 7.14 [6 0.79, 7.350] Mir et al., 2010 - - 66.00 [35.21, 84.79] Mir et al., 2015 - 9.00 [2.40, 9, 53.96] Murugkar et al., 2016 - 7.50 [2.0.73, 54.27] Nike et a	Khan et al., 2015	+ 11.	11[4.62	, 17.60]	
Khan t al., 2019 + 65.71 [56.64, 74.79] Khan t al., 2019 + 6.00 [1.35, 10.65] Khan t al., 2019 + 82.76 [74.82, 90.70] Khan t al., 2019 + 48.57 [32.01, 65.13] Kimar t al., 2010 - 52.4 [2.22, 8.25] Latha et al., 2017 + 64.71 [54.55, 74.87] Lay et al., 2010 - 3.33 [-3.09, 9.76] Mahato, 2019 - 0.00 [-0.00, 0.00] Mahmud et al., 2011 + 25.53 [13.07, 38.00] Malhi et al., 2019 - 16.67 [-13.15, 46.49] Manguiat et al., 2010 - 1.47 [-0.55, 3.49] Maripandi et al., 2010 - 1.47 [60.79, 73.50] Minami et al., 2010 - 32.86 [2.185, 43.862] Minami et al., 2010 + 32.86 [3.42, 25.45] Minami et al., 2010 + 32.86 [3.42, 25.45] Mir et al., 2010 + 32.86 [3.43, 100.66] Mir et al., 2010 + 32.86 [3.43, 25.45] Mir et al., 2010 + 32.86 [3.43, 25.45] Mir et al., 2017 + 32.86 [3.43, 25.45] Naudulah et	Khan et al., 2015	• 1.	19 [-1.13	, 3.51]	
Khan t al., 2019 + 6.00 [1.35, 10.65] Khan t al., 2019 + 82.76 [74.82, 90.70] Khan t al., 2019 - 97.87 [95.49, 100.25] Khan t al., 2010 - 97.87 [95.49, 100.25] Latha et al., 2010 - 82.76 [74.82, 90.70] Latha et al., 2010 - 48.57 [32.01, 65.13] Kumar et al., 2010 - 64.71 [54.55, 74.87] Lay et al., 2011 - 48.00 [34.15, 61.85] Maharjan et al., 2006 - 0.00 [-0.00, 0.00] Mahmud et al., 2011 - 75.00 [61.58, 88.42] Mahmud et al., 2011 - 16.67 [-13.15, 46.49] Maripandi et al., 2010 - 16.67 [-13.15, 46.49] Maripandi et al., 2010 - 17.42, 9.03 Mir et al., 2010 - 32.86 [21.85, 34.8] Minami et al., 2010 - 32.86 [21.85, 34.8] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 18.67 [9.85, 27.48] Nurugkar et al., 2015 - 14.63 [3.82, 25.45] <	Khan t al., 2019	- 65.	71 [56.64	, 74.79]	
Khan t al., 2019 + 82.76 [74.82, 90.70] Khan t al., 2019 -97.87 [95.49, 100.25] Kumar et al., 2010 - Kumar et al., 2010 - Kumar et al., 2017 - Laty et al., 2017 - Maharjan et al., 2006 - Maharjan et al., 2006 - Maharjan et al., 2011 - Maharjan et al., 2011 - Mahmud et al., 2011 - Mahmud et al., 2011 - Malhi et al., 2013 - Malhi et al., 2010 - Mathew et al., 2010 - Mathew et al., 2010 - Marigual et al., 2010 - Mir et al., 2015 - Murugkar et al., 2017 - Nik et al., 2017 - Nik et al., 2017 - Nik et al., 2017	Khan t al., 2019	• 6.	00 [1.35	, 10.65]	
Khan t al., 2019 •97.87 [95.49, 100.25] Khan t al., 2019 - 48.57 [32.01, 65.13] Kumar et al., 2010 • 5.24 [2.22, 8.25] Lath a et al., 2011 - 64.71 [54.55, 74.87] Lay et al., 2010 - 48.00 [34.15, 61.85] Mahato, 2019 - 0.00 [-0.00, 0.00] Mahmud et al., 2011 - 75.00 [61.58, 88.42] Manguiat et al., 2013 - 16.67 [-13.15, 46.49] Manguiat et al., 2010 - 1.47 [-0.55, 3.49] Marbay et al., 2010 - 1.47 [-0.55, 3.49] Minami et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Murugkar et al., 2017 - <td>Khan t al., 2019</td> <td>- 82.</td> <td>76 [74.82</td> <td>, 90.70]</td>	Khan t al., 2019	- 82.	76 [74.82	, 90.70]	
Khan t al., 2019	Khan t al., 2019	• 97.	87 [95.49	, 100.25]	
Kumar et al., 2010 • 5.24 [2.22, 8.25] Latha et al., 2017 - 64.71 [54.55, 74.87] Lay et al., 2010 - 48.00 [34.15, 61.85] Maharjan et al., 2006 + 3.33 [-3.09, 9.76] Maharjan et al., 2010 - 75.00 [61.58, 88.42] Mahmud et al., 2011 - 25.53 [13.07, 38.00] Malhi et al., 2019 - 16.67 [-13.15, 46.49] Manguiat et al., 2010 - 14.7 [-0.55, 3.49] Maripandi et al., 2010 - 14.7 [-0.55, 3.49] Maripandi et al., 2010 - 78.00 [66.52, 89.48] Miner et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Murugkar et al., 2010 - 78.00 [66.52, 89.48] Murugkar et al., 2017 - 39.02 [24.09, 53.66] Naharipan et al., 2017 - 31.00 [9.70, 16.30]	Khan t al., 2019	48.	57 [32.01	, 65.13]	
Latha et al., 2017	Kumar et al., 2010	• 5.	24 2.22	8.25]	
Lay et al., 2011	Latha et al., 2017	64.	71 54.55	, 74.87]	
Maharjan et al., 2006 + 3.33 [-3.09, 9.76] Mahato, 2019 - 0.00 [-0.00, 0.00] Mahmud et al., 2011 - 75.00 [61.58, 88.42] Mandu et al., 2011 - 25.53 [13.07, 38.00] Malhi et al., 2019 - 16.67 [-13.15, 46.49] Mariguiat et al., 2010 - 16.67 [-13.15, 46.49] Mariguiat et al., 2010 - 14.9, 16.69] Menghistu et al., 2010 - 73.00 [66.52, 89.48] Mir et al., 2010 - 60.00 [35.21, 84.79] Mir et al., 2010 - 60.00 [35.21, 84.79] Mir et al., 2010 - 90.50 [84.34, 100.66] Mir et al., 2010 - 90.50 [84.34, 100.66] Mir et al., 2010 - 90.50 [84.34, 100.66] Murugkar et al., 2017 - 18.67 [9.85, 27.48] Neunchart et al., 2017 - 13.00 [9.70, 16.30] Nide et al., 2017 - 65.28 [54.28, 76.27] Nghiem et al., 2017 - 13.00 [9.70, 16.30] Niyomdecha et al., 2016 - 2.56 [-2.40, 7.52] Olukemi et al., 2018 - 2.56 [-2.40, 7.52] O	Lay et al., 2011	48.	00 34.15	61.85]	
Mahato, 2019 0.00 [-0.00, 0.00] Mahmud et al., 2011 - Manguiat et al., 2011 - Manguiat et al., 2013 16.67 [-13.15, 46.49] Maripandi et al., 2010 1.47 [-0.55, 3.49] Marguiat et al., 2010 1.47 [-0.55, 3.49] Minami et al., 2010 - Mir et al., 2010 - Mir et al., 2010 - Murugkar et al., 2010 - Mir et al., 2010 - Murugkar et al., 2015 - Naik et al., 2017 - Nik et al., 2017 - Nidaullah et al., 2017 - Night et al., 2018 - Padungtod et al., 2016 - Stage - Nidaullah et al., 2016 - Padungtod et al., 2006 - Padungtod et al., 2006	Maharjan et al., 2006	+ 3.	33 -3.09	9.76]	
Mahmud et al., 2011	Mahato, 2019	- 0.	00.0- 100	0.001	
Mahmud et al., 2011	Mahmud et al., 2011	75.	00 61.58	88.42]	
Mallhi et al., 2019	Mahmud et al., 2011	25.	53 1 13.07	38.001	
Manguiat et al., 2013	Mallhi et al., 2019	16.	67 [-13.15	46.491	
Maripandi et al., 2010 1.47 [-0.55, 3.49] Mathew et al., 2009 9.09 [1.49, 16.69] Menghistu et al., 2011 67.14 [60.79, 73.50] Minami et al., 2010 - 32.86 [21.85, 43.86] Minami et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 9.250 [84.34, 100.66] Mirdha et al., 2020 - 14.63 [3.82, 25.45] Naik et al., 2015 - 39.02 [24.09, 53.96] Neunchat et al., 2017 - 65.28 [54.28, 76.27] Nghiem et al., 2017 - 65.28 [54.28, 76.27] Nidaullah et al., 2017 - 37.50 [20.73, 54.27] Nidaullah et al., 2017 - 37.50 [20.73, 54.27] Nidaullah et al., 2016 - 52.08 [37.95, 66.22] Novera et al., 2016 - 2.56 [-2.40, 7.52] Olukemi et al., 2018 - 8.33 [1.34, 15.33] Padungtod et al., 2006 - 48.85 [42.80, 54.91] Padungtod et al., 2006 - 2.52 [1.34, 3.70] Paraertsee et al., 2019 - 7.20 [4.00, 10.40] Prasertsee et al., 2019 - 7.20 [4.00, 10.40] Prasertsee et al., 2019 - 30.00 [21.02, 38.98]	Mangulat et al., 2013	16.	67 [-13.15	46.491	
Mathew et al., 2009 + 9.09 [1.49, 16.69] Menghistu et al., 2011 + 67.14 [60.79, 73.50] Minami et al., 2010 + 32.86 [21.85, 43.86] Mir et al., 2010 + 78.00 [66.52, 89.48] Mir et al., 2010 + 92.50 [84.34, 100.66] Mirdha et al., 2020 + 18.67 [9.85, 27.48] Murugkar et al., 2005 + 14.63 [38.2, 25.45] Naik et al., 2017 + 13.00 [9.70, 16.30] Nijomdecha et al., 2017 + 13.00 [9.70, 16.30] Niyomdecha et al., 2016 + 2.56 [-2.40, 7.52] Novera et al., 2020 + 2.56 [-2.40, 7.52] Olukemi et al., 2018 + 8.11 [1.89, 14.33] Padungtod et al., 2006 + 2.52 [1.34, 15.33] Padungtod et al., 2006 + 2.52 [1.34, 37.0] Parvej et al., 2019 + 2.68 [18.17, 29.20] Prasertsee et al., 2019 + 2.50 [0.00 [Prasertsee et al., 2019 +	Maripandi et al., 2010	• 1.	47 [-0.55	3.491	
Menghistu et al., 2011 + 67.14 [60.79, 73.50] Minami et al., 2010 - 32.86 [21.85, 43.86] Minami et al., 2010 - 78.00 [66.52, 89.48] Mir et al., 2010 - 60.00 [35.21, 84.79] Mir et al., 2010 - 92.50 [84.34, 100.66] Mirdha et al., 2020 - 18.67 [9.85, 27.48] Murugkar et al., 2005 - 14.63 [3.82, 25.45] Naik et al., 2015 - 39.02 [24.09, 53.96] Neunchat et al., 2017 - 65.28 [54.28, 76.27] Nghiem et al., 2019 - 37.50 [20.73, 54.27] Nidaullah et al., 2017 - 13.00 [9.70, 16.30] Niyomdecha et al., 2016 - 25.68 [37.95, 66.22] Novera et al., 2020 - 25.66 [-2.40, 7.52] Olukemi et al., 2006 - 8.33 [1.34, 15.33] Padungtod et al., 2006 - 2.52 [1.34, 3.70] Parvej et al., 2019 - 2.68 [18.17, 29.20] Prasertsee et al., 2019 -	Mathew et al., 2009	- 9.	091 1.49	16.691	
Minami et al., 2010	Menghistu et al., 2011	 ← 67. 	14 [60.79	73.501	
Minami et al., 2010	Minami et al., 2010	32.	86 21.85	43.861	
Mir et al., 2010	Minami et al., 2010	78.	00 66.52	89.481	
Mir et al., 2015 -92.50 [84.34, 100.66] Mridha et al., 2020 - Murugkar et al., 2005 - Naik et al., 2015 - Naik et al., 2015 - Naik et al., 2015 - Nurugkar et al., 2017 - Nghiem et al., 2017 - Nidaullah et al., 2017 - Niyomdecha et al., 2017 - Niyomdecha et al., 2016 - Novera et al., 2020 - Olukemi et al., 2018 - Padungtod et al., 2006 - Padungtod et al., 2006 - Parvej et al., 2016 - Parvej et al., 2019 - Prasertsee et al., 2019 - Prasertsee et al., 2019 - Prasertsee et al., 2019 - Padungtod et al., 2019 - Prasertsee et al., 2019 - Pasertsee et al., 2019 - Pasertsee et al., 2019 - </td <td>Mir et al., 2010</td> <td> 60.</td> <td>00 1 35.21</td> <td>84.791</td>	Mir et al., 2010	60.	00 1 35.21	84.791	
Mridha et al., 2020 + 18.67 [9.85, 27.48] Murugkar et al., 2005 + 14.63 [3.82, 25.45] Naik et al., 2015 - 39.02 [24.09, 53.96] Neunchat et al., 2017 - 65.28 [54.28, 76.27] Nghiem et al., 2019 - 37.50 [20.73, 54.27] Nidaullah et al., 2017 - 13.00 [9.70, 16.30] Niyomdecha et al., 2016 - 2.56 [-2.40, 7.52] Novera et al., 2020 - 2.56 [-2.40, 7.52] Olukemi et al., 2018 - 8.11 [1.89, 14.33] Padungtod et al., 2006 - 2.52 [1.34, 15.33] Padungtod et al., 2006 - 2.52 [1.34, 3.70] Parvej et al., 2016 - 2.00 [-0.95, 2.95] Patoli et al., 2019 - 23.68 [18.17, 29.20] Prasertsee et al., 2019 - 30.00 [2.102, 38.98] Prasertsee et al., 2019 - 0.00 [-	Mir et al., 2015	92.	501 84.34	100.661	
Murugkar et al., 2005 14.63 [3.82, 25.45] Naik et al., 2015 39.02 [24.09, 53.96] Neunchat et al., 2017 65.28 [54.28, 76.27] Nghiem et al., 2019 37.50 [20.73, 54.27] Nidaullah et al., 2017 13.00 [9.70, 16.30] Niyomdecha et al., 2016 52.08 [37.95, 66.22] Novera et al., 2020 - 2.56 [-2.40, 7.52] Olukemi et al., 2018 8.11 [1.89, 14.33] Padungtod et al., 2006 - 8.33 [1.34, 15.33] Padungtod et al., 2006 - 2.52 [1.34, 3.70] Parvej et al., 2016 - 1.00 [-0.95, 2.95] Patoli et al., 2019 - 23.68 [18.17, 29.20] Prasertsee et al., 2019 - 30.00 [21.02, 38.98] Prasertsee et al., 2019 - 5.00 [0.73, 9.27] Reddy et al., 2019 - 0.00 [-0.00, 0.00] Reddy et al., 2019 - 25.00 [16.51, 33.49] Reddy et al., 2019 - 0.00 [-0.00, 0.00] Reddy et al., 2019 - 0.00 [-0.00, 0.00] Ruban and Fairoze, 2011 - 88.16 [83.02, 93.29]	Mridha et al., 2020	18.	67 9.85	27.481	
Naik et al., 2015	Murugkar et al., 2005	14.	631 3.82	25,451	
Neunchat et al., 2017	Naik et al., 2015	39.	021 24.09	53,961	
Nghiem et al., 2019	Neunchat et al., 2017	65.	281 54.28	76.271	
Nidaullah et al., 2017 13.00 [9.70, 16.30] Niyomdecha et al., 2016 52.08 [37.95, 66.22] Novera et al., 2020 2.56 [-2.40, 7.52] Olukemi et al., 2018 8.11 [1.89, 14.33] Padungtod et al., 2006 8.33 [1.34, 15.33] Padungtod et al., 2006 48.85 [42.80, 54.91] Padungtod et al., 2006 2.52 [1.34, 3.70] Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 88.16 [83.02, 93.29]	Nohiem et al. 2019	37.	50 [20.73	54.271	
Niyomdecha et al., 2016	Nidaullah et al., 2017	- 13.	001 9.70	16.301	
Novera et al., 2020 2.56 [-2.40, 7.52] Olukemi et al., 2018 8.11 [1.89, 14.33] Padungtod et al., 2006 8.33 [1.34, 15.33] Padungtod et al., 2006 48.85 [42.80, 54.91] Padungtod et al., 2006 2.52 [1.34, 3.70] Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 88.16 [83.02, 93.29]	Nivomdecha et al., 2016	52.	08 [37.95	66.221	
Olukemi et al., 2018 8.11 [1.89, 14.33] Padungtod et al., 2006 8.33 [1.34, 15.33] Padungtod et al., 2006 48.85 [42.80, 54.91] Padungtod et al., 2006 2.52 [1.34, 3.70] Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 88.16 [83.02, 93.29]	Novera et al., 2020	• 2	561 -2.40	7.521	
Padungtod et al., 2006 8.33 [1.34, 15.33] Padungtod et al., 2006 48.85 [42.80, 54.91] Padungtod et al., 2006 2.52 [1.34, 3.70] Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 88.16 [83.02, 93.29]	Olukemi et al. 2018	- 8.	111 1.89	14.33]	
Padungtod et al., 2006 48.85 [42.80, 54.91] Padungtod et al., 2006 2.52 [1.34, 3.70] Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 88.16 [83.02, 93.29]	Padunotod et al., 2006	- 8	33 [1.34	15.331	
Padungtod et al., 2006 2.52 [1.34, 3.70] Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 88.16 [83.02, 93.29]	Padungtod et al., 2006	- 48	851 42.80	54.911	
Parvej et al., 2016 1.00 [-0.95, 2.95] Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 88.16 [83.02, 93.29]	Padunotod et al. 2006	. 2	521 1.34	3,701	
Patoli et al., 2019 23.68 [18.17, 29.20] Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019 - Prasertsee et al., 2019 - Prasertsee et al., 2019 - Reddy et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 88.16 [83.02, 93.29]	Parvei et al., 2016	• 1	001 -0.95	2.951	
Prasertsee et al., 2019 7.20 [4.00, 10.40] Prasertsee et al., 2019	Patoli et al., 2019	+ 23.	68 [18.17	29.201	
Prasertsee et al., 2019 30.00 [21.02, 38.98] Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 - Reddy et al., 2019 - Reddy et al., 2019 0.00 [-0.00, 0.00] Ruban and Fairoze, 2011 88.16 [83.02, 93.29]	Prasertsee et al., 2019	• 7	201 4.00	10.401	
Prasertsee et al., 2019 5.00 [0.73, 9.27] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 0.00 [-0.00, 0.00] Ruban and Fairoze, 2011 88.16 [83.02, 93.29]	Prasertsee et al., 2019	- 30	00 [21.02	38 981	
Reddy et al., 2019 0.00 [-0.00, 0.00] Reddy et al., 2019 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Ruban and Fairoze, 2011 88.16 [83.02, 93.29]	Prasertsee et al., 2019	• 5	001 0.73	9.271	
Reddy et al., 2019 - 25.00 [16.51, 33.49] Reddy et al., 2019 0.00 [-0.00, 0.00] Ruban and Fairoze, 2011 88.16 [83.02, 93.29]	Reddy et al., 2019	• 0	00.0- 100	0.001	
Reddy et al., 2019 0.00 [-0.00, 0.00] Ruban and Fairoze, 2011 88.16 [83.02, 93.29]	Reddy et al., 2019	+ 25	00 [16.51	33.491	
Ruban and Fairoze, 2011 + 88.16 [83.02. 93.29]	Reddy et al., 2019	• 0	00.0- 100	0.001	
COLUMN COLUMN	Ruban and Fairoze, 2011	• 88.	16 83.02	93.291	

0.00 50.00 100.00

Study		Prevalence with 95% Cl		
NM				
Sajid et al., 2015		14.55 [5.23,	23.86]
Sajid et al., 2015		42.50 [27.18,	57.82]
Sajid et al., 2015	•	17.07 [13.45,	20.68]
Sajid et al., 2015		40.23 [29.93,	50.53]
Sajid et al., 2015		13.33 [1.17,	25.50]
Sajid et al., 2015		30.43 [19.58,	41.29]
Saha et al., 2016	•	15.92 [12.93,	18.90]
Saharan et al., 2020	•	2.73 [0.58,	4.88]
Saikia and Joshi, 2010		- 57.14 [20.48,	93.80]
Samad et al., 2018		48.15 [29.30,	66.99]
Samad et al., 2018		45.10 [31.44,	58.75]
Samad et al., 2018	•	8.91 [4.98,	12.84]
Samanta et al., 2019	•	14.72 [10.15,	19.29]
Saravanan et al., 2015		3.50 [0.95,	6.05]
Saravanan et al., 2015		43.90 [35.13,	52.67]
Saravanan et al., 2015		36.67 [19.42,	53.91]
Saravanan et al., 2015		•100.00 [100.00,	100.00]
Saravanan et al., 2015		62.50 [47.50,	77.50]
Saravanan et al., 2015	+	28.04 [19.53,	36.55]
Saravanan et al., 2015	-	10.26 [3.52,	16.99]
Saud et al., 2019		4.24 [2.32,	6.15]
Selvaraj et al., 2010		42.47 [31.13,	53.80]
Selvaraj et al., 2010		56.94 [45.51,	68.38]
Selvaraj et al., 2010		7.33 [3.16,	11.51]
Shafini et al., 2017		28.00 [15.55,	40.45]
Shafini et al., 2017		30.00 [9.92,	50.08]
Shafini et al., 2017		16.67 [3.33,	30.00]
Sharma et al., 2019		42.86 [31.26,	54.45]
Singh et al., 2013	-	47.86 [42.01.	53.71]
Soomro et al., 2010		6.28 [2.98,	9.59]
Srinivasan et al., 2014		6.82 [2.52.	11.12]
Srinivasan et al., 2014		13.17 [8.54.	17.80]
Srinivasan et al., 2014		5.06 [1.64.	8.48]
Srinivasan et al., 2014	•	4.72	1.03.	8.41]
Srinivasan et al., 2014	•	9.58 [5.86.	13.31]
Srinivasan et al., 2014		4.00 [0.86.	7.14]
Sripaurva et al., 2019		72.50 [62.72.	82.281
Suresh et al., 2011	+	20.00 [12.52.	27.481
Suresh et al., 2011		24.00 [15.63.	32.371
Suresh et al., 2011	-	28.00	19.20.	36.801
Suresh et al., 2011	-8-	33.00 [26.48	39.521
Suresh et al., 2011	+	8.57 [2.01	15.131
Suresh et al., 2011	+	5.26 [-1.84	12.361
Survani et al., 2017	-	5.00 [-0.51	10,511
		25.60 [19.08,	32.11]

0.00 50.00 100.00

Study		Prevalence with 95% CI	
NM			
Ta et al., 2014		8.00 [-2.63,	18.63]
Ta et al., 2014		72.22 [61.88,	82.57]
Thai and Yamaguchi, 2012		23.33 [8.20,	38.47]
Tran et al., 2005		5.56 [-0.55,	11.67]
Trongjit et al., 2014		14.89 [9.80,	19.98]
Trongjit et al., 2014		38.00 [28.49,	47.51]
Trongjit et al., 2014		47.22 [30.91,	63.53]
Trongjit et al., 2014	-	25.23 [19.41,	31.05]
Vadhanasin et al., 2004		42.57 [34.60,	50.53]
Vaeteewootacharn et al., 2005	-	21.00 [15.36,	26.64]
Van et al., 2007		- 96.43 [92.46,	100.40]
Vindigni et al., 2007		53.33 [35.48,	71.19]
Waghamare et al., 2017		62.00 [48.55,	75.45]
Waghamare et al., 2017		25.00 [0.50,	49.50]
Wardhana et al., 2019		16.67 [-13.15,	46.49]
Yang et al., 2018		18.33 [8.54,	28.12]
Yasmin et al., 2020		34.00 [20.87,	47.13]
Yasmin et al., 2020		50.00 [36.14,	63.86]
Zwe et al., 2018		25.00 [17.25,	32.75]
Zwe et al., 2018	-	12.67 [7.34,	17.99]
Murugadas et al., 2015		5.33 [0.25,	10.42]
Murugadas et al., 2015	-	2.90 [-1.06,	6.86]
Murugadas et al., 2015		0.00 [-0.00,	0.00]
Murugadas et al., 2015		0.00 [-0.00,	0.00]
Murugadas et al., 2015	+	2.67 [-0.98,	6.31]
Sudhanthirakodi et al., 2016		22.00 [10.52,	33.48]
Sudhanthirakodi et al., 2016		40.00 [26.42,	53.58]
Lertworapreecha et al., 2013		67.50 [52.99,	82.01]
Salauddin et al., 2015		13.73 [4.28,	23.17]
Kulasooriya et al., 2019	+	4.17 [-1.49,	9.82]
Kulasooriya et al., 2019	-	0.00 [-0.00,	0.00]
Kulasooriya et al., 2019		18.07 [9.79,	26.35]
Maqdhurangi et al., 2013	+	42.63 [37.21,	48.06]
Heterogeneity: τ² = 639.89, Ι² = 100.00%, Η² = 3.10e+07	•	28.19 [23.66,	32.73]

0.00

Test of $\theta_i = \theta_i$: Q(124) = 8.57e+09, p = 0.00

Random-effects REML model

140 | Page

100.00

50.00

Appendix U. STATA-17 commands

meta set ppercent sepercent, studylabel(author) meta forestplot, random(reml) meta forestplot, random(reml) subgroup(country) meta forestplot, random(reml) subgroup(sample type) meta forestplot, random(reml) subgroup(study site) meta forestplot, random(reml) subgroup(health status) meta forestplot, random(reml) subgroup(production type) gen logppercent=log10(ppercent) gen logciu=log10(ci u) gen logcil=log10(ci_l) gen logsepercent=log(sepercent) meta funnelplot meta bias, egger random(reml) meta regress i.country, random(reml) meta regress i.sample type, random(reml) meta regress i.production type, random(reml) meta regress i.study site, random(reml) meta regress i.health status, random(reml)

Biography

Nurun Nahar Chisty passed the Secondary School Certificate Examination, SSC, in 2010 obtaining GPA 4.83 (A) and then Higher Secondary Certificate Examination, HSC, in 2012 obtaining GPA 5.00 (A+). Nurun Nahar Chisty obtained her Doctor of Veterinary Medicine Degree in 2019 from Chattogram Veterinary and Animal Sciences University, CVASU, Bangladesh. Now, she is a candidate for the degree of Master of Science in Epidemiology under the Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University. She has immense interest working on zoonotic food-borne pathogens and educational research.