WELCOME TO MY PRESENTATION

Presented by Sharmin Hossen Jenia

MS fellow in Food Chemistry and

Quality Assurance

Roll No: 0118/05

Reg No.: 00540

Session: January-June, 2018

Semester: July-December, 2019

Research Supervisor

Monsur Ahmad

Assistant Professor Department of Applied Chemistry and Chemical Technology Faculty of Food Science & Technology Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh

Department of applied chemistry and chemical technology Faculty of food science & technology Chattogram veterinary & animal sciences university

TITLE

STUDY ON NUTRITIONAL COMPOSITION, BIOACTIVE COMPOUNDS AND ANTIMICROBIAL ACTIVITY OF THE CLOVE (Syzygium aromaticum)

DEPARTMENT OF APPLIED CHEMISTRY AND CHEMICAL TECHNOLOGY FACULTY OF FOOD SCIENCE & TECHNOLOGY CHATTOGRAM VETERINARY & ANIMAL SCIENCES UNIVERSITY

Chattogram Veterinary And Animal Sciences University

- > Clove (S. aromaticum) is one of the most valuable spices (Phytother. Res. 21, 2007).
- \succ Cloves are a very useful herb that has many uses for the body and the aroma.
- \geq Clove is native of Indonesia but nowadays is cultured in several parts of the world (Phytother. Res. 21, 2007).
- ➤ The term 'Clove' is derived from the 'Clou' (French word) and the 'Clout' (English word) (Chaieb et al., 2007a).
- > This plant represents one of the richest source of phenolic compounds such as eugenol, eugenol acetate (D. Francisco et al., 2014).

Chattogram Veterinary And Animal Sciences University

> Main components of clove bud oil such as eugenol, caryophyllene were identified by GC-MS (Nazrul et al., 2010).

➤ The high levels of eugenol contained in clove essential oil responsible for strong antimicrobial activity (Huang et al., 2002; Velluti et al., 2003).

> Eugenol act as a natural antioxidant.

Antioxidants are effective for inhibiting different human diseases (Zengin and Baysal, 2014).

Chattogram Veterinary And Animal Sciences University

≻ Clove has been used as food preservative and for many medicinal purposes (Parle and Khanna, 2011).

➢ Cloves can effectively prevent the lung cancer as well as the skin cancer (Parle Milind et al., 2011).

> Cloves benefit the diabetic patients by controlling the blood glucose levels. (Chaieb K et al., 2007).

Chattogram Veterinary And Animal Sciences University

>Clove is used as strength against gastro-intestinal spasm, stomach distension and flatulence (Elujoba et al., 2005).

Chattogram Veterinary And Animal Sciences University

➢ Clove essential oil used as an antimicrobial, anticancer, antibiotics (David & Gordon, 2012).

➤ The proximate chemical composition of clove as follows: moisture 10%, fiber 20%, ash 5.2%, protein 1.2%, fat 12.1% and carbohydrates 51.5% (Abdel M. 2007).

Clove has physical, mental and emotional health benefits.

➢ Cloves represent one of the Mother Nature's premier antiseptic (Parle Milind et al., 2011).

Chattogram Veterinary And Animal Sciences University

HEALTH BENEFITS OF CLOVES

Anti-Bacterial

Nausea

Anti-fungal

Cancer Prevention

Cardiovascular Health

Cholera Prevention

Blood Purifier

Toothache

Antiseptic

Powerful germicidal

Reduce Hypertension

Mosquito Repellent

Indigestion

Headaches

Chattogram Veterinary And Animal Sciences University

AIMS & OBJECTIVES

Extraction and proximate analysis of three brands clove.
To quantify the bioactive compounds (phenolic content, flavonoid content and anthocyanin content) and antioxidant activity (AOA) of clove essential oil.

> To determine antimicrobial activity of essential oil of clove.

 \succ To identify the unknown compounds in clove oil by GC-MS.

Chattogram Veterinary And Animal Sciences University

EXPERIMENTAL DESIGN

Chattogram Veterinary And Animal Sciences University

MATERIALS & METHODS

Extraction of essential oil of clove

Experimental work was conducted using solvent extractor. In solvent extractor, petroleum ether was used as a solvent.

Chattogram Veterinary And Animal Sciences University

Physicochemical properties of CEO

Determination of Acid Value

➤The no. of mg of KOH needed to neutralize the free fatty acids present in1g of oil.

➤Acid Value of oil samples were determined by standard method described in AOAC (2016) for oils and fats.

Determination of Saponification Value

The weight of KOH expressed in mg, required to saponify of 1 g of the oil or fat.

➤Saponification values of oil samples were estimated according to AOAC (2016).

Titration with 0.1N KOH

Chattogram Veterinary And Animal Sciences University

Physicochemical properties of clove essential oil

Determination of Peroxide Value

- \checkmark The content of peroxide oxygen per 1 kilogram of fat or oil.
- ✓ Peroxide value was determined according to AOAC Official

Method.

Determination of Iodine value

✓ Iodine value is expressed in g of iodine absorbed by 100 g of oil.

✓ Iodine value was determined according to AOAC (2016) Official Method.

Titration with unknown Na₂S₂O₃ solution

Titration with $0.1N Na_2S_2O_3$ solution

Chattogram Veterinary And Animal Sciences University

Proximate composition analysis

Determination of moisture:

Chattogram Veterinary And Animal Sciences University

DETERMINATION OF ASH

Chattogram Veterinary And Animal Sciences University

DETERMINATION OF CRUDE FIBER

Chattogram Veterinary And Animal Sciences University

DETERMINATION OF PROTEIN

Adding beaker

Distillation

Food

Chattogram Veterinary And Animal Sciences University

GC-MS ANALYSIS

> The sample solution is injected into the GC inlet where it is vaporized and swept onto a chromatographic column by the carrier gas (He).

The sample flows through the column and compounds mixture are separated by virtue of their relative interaction with the coating of the column (stationary phase) and the carrier gas (mobile phase).

ANTIOXIDANT ACTIVITY (AOA)

- > Antioxidant capacity of the extracts was determined using DPPH assay.
- The absorbance was read at wavelength 517 nm using UV-VIS spectrophotometer (UV-2600, Shimadzu Corporation, USA).
- ≻ Trolox used as standard.
- ➤ TEAC composite (Trolox equivalent antioxidant capacity) was used for the calibration standard curve.

Chattogram Veterinary And Animal Sciences University

DETERMINATION OF ANTIOXIDANT ACTIVITY (AOA)

Figure : Antioxidant activity (AOA) determination procedure

Chattogram Veterinary And Animal Sciences University

Chattogram Veterinary And Animal Sciences University

Quantification with UV-visible spectrophotometer

Left for 30 min

Adding methanolic DPPH solution

UV-Visible spectrophotometer

BIOACTIVE COMPOUNDS

✓ The term "bioactive" is consisting of two words: *bio-* and *-active*.

 \checkmark A bioactive compound is just a constituent that has a biological action.

 \checkmark Bioactive compounds are not nutrients they are contained in foods or their constituents.

 \checkmark "Bioactive compounds" are essential and non-essential composites that occur in nature.

✓ Bioactive compounds like total flavonoids content (TFC), total phenolic content (TPC) and total anthocyanin content (TAC).

Chattogram Veterinary And Animal Sciences University

Stock solutions of Extract

Chattogram Veterinary And Animal Sciences University

TOTAL FLAVONOIDS CONTENT

Total Flavonoids Content (TFC) of the clove oil samples were determined by using the aluminum chloride colorimetric process reported by Chang et al. (2002) with slight modifications.

FC reagent

Na₂CO₃ solution

Quantification with UV-visible spectrophotometer

Chattogram Veterinary And Animal Sciences University

ANTIMICROBIAL ACTIVITY

囮

> Antibiotic as originally defined was a chemical substance produced by various species of microorganisms that was capable of inhibiting the growth or kill the microorganism .

 \succ The ability that a drug kills or suppresses the growth of microorganisms.

Protect against pathogenic insects, bacteria, fungi or protozoa.

 \succ Volatile gas combination of cinnamon and clove oil inhibit growth of spoilage fungi, yeast and bacteria.

Chattogram Veterinary And Animal Sciences University

CULTURE SENSITIVE TEST AT MULLER HINTON AGAR

Chattogram Veterinary And Animal Sciences University

RESULTS AND DISCUSSION

Chattogram Veterinary And Animal Sciences University

PHYSICOCHEMICAL PROPERTIES OF THREE BRANDS CLOVE ESSENTIAL OIL

	Sample ID (n = 3)	Acid value (mg KOH/g oil)	Saponification value (mg /g oil)	Peroxide value (meq O ₂ /kg oil)	Iodine value (g I ₂ /100 g of oil)
	CIs	5.213±0.01°	37.257±0.01°	4.610±0.01°	51.457±0.01ª
	CId	6.087±0.01 ^b	40.670±0.01ª	6.667±0.01ª	49.507±0.01°
Wh C	CSI	6.457±0.01ª	38.056±0.01 ^b	5.127±0.01 ^b	50.157±0.01 ^b

Chattogram Veterinary And Animal Sciences University

DENSITY FOR THREE BRANDS CLOVES ESSENTIAL OIL

Density (ρ) for three brands cloves essential oil are measured at six different temperatures between 25°C and 50°C maintaining 5°C interval. The following are the observations regarding density (ρ): At a particular temperature, ρ of the cloves essential oil decreases in the order: CId > CSl > CIs

The ρ vs. T curves for three brands CEO follow a similar trend - ρ decreasing almost linearly with the temperature.

Chattogram Veterinary And Animal Sciences University

VISCOSITY FOR THREE BRANDS CEO

Viscosity (η) for three brands cloves essential oil are measured at six different temperatures between 25°C and 50°C maintaining 5°C interval. At a particular temperature, η of the cloves essential oil decreases in the order: CSl > CId > CIs

The η vs. T curves for three brands cloves essential oil follow a similar trend - η decreasing slowly with the temperature.

Chattogram Veterinary And Animal Sciences University

Y SOM
C CADY
(a)
DIA
WILL BE
-1874
1234

the .

Sample ID	% Moisture	% Ash	% Protein	% Fat	% Fiber	% CHO	Energy (Kcal/g)
CIs	12.287	4.877	4.213	9.817	16.694	52.210) 313.71
	± 0.01 ^b	± 0.01°	±0.01 ^b	±0.01c	±0.01ª	±0.01ª	±0.01 ^b
CId	13.653	5.177	4.127	10.187	15.821	51.53	312.35
	± 0.01ª	±0.01 ^b	±0.01°	±0.01 ^b	±0.01°	±0.01°	±0.01°
CSI	11.553	5.253	4.557	11.187	15.875	51.587	325.23
	± 0.01°	±0.01ª	±0.01ª	±0.01ª	±0.01 ^b	±0.01 ^b	±0.01ª

Chattogram Veterinary And Animal Sciences University

Phytocomponents identified in clove essential oils

Hit#:1 Entry:66605 Library:NIST17-1.lib SI:79 Formula:C15H24O CAS:0-00-0 MolWeight:220 RetIndex:1531 CompName:trans-Z-alpha.-Bisabolene epoxide \$\$ 4-[(1Z)-1,5-Dimethyl-1,4-hexadienyl]-1-methyl-7-oxabicyclo[4.1.0]heptane # \$\$

Chattogram Veterinary And Animal Sciences University

Concentration and absorbance of sample solution for AOA

Sample ID	Туре	Conc. (ppm)	WL 517.0	Wgt. Factor
CIs	EAIs	70.66 ± 0.01 ^a	0.001	1.000
CId	EAId	70.14±0.01 ^b	0.002	1.000
CSI	EAS	69.74±0.01°	0.003	1.000

Chattogram Veterinary And Animal Sciences University

Concentration & absorbance of sample Solution for bioactive compounds

Sample ID	Туре	TFC		TPC		TAC		Wt Factor
		Conc. (ppm)	WL 415nm	Conc. (ppm)	WL 760nm	Conc. (ppm)	WL 520nm	
CIs	EAIs	244.36 ±0.01 ^b	1.603	159.44 ±0.01 ^a	1.725	16.071 ±0.01°	0.233	1.000
CId	EAId	161.13 ±0.01°	1.057	142.82 ±0.01 ^b	1.854	18.156 ±0.01ª	0.338	1.000
CSI	EAS	321.95 ±0.01 ^a	2.112	135.11 ±0.01°	1.912	17.942 ±0.01 ^b	0.326	1.000

Chattogram Veterinary And Animal Sciences University

BIOACTIVE COMPOUNDS

Results of total flavonoids, total phenolics and total anthocyanin contents of three brands clove essential oil.

Figure: Bioactive Compounds of CIs, CId & CSI sample at different concentrations

Chattogram Veterinary And Animal Sciences University

Zone of inhibition (mm) showing the antimicrobial activity of CEO

Test → Organism		Staphylococcus aureus			Escherichia coli			Pseudomonus aeruginosa		
SampleID	COE (µg/ml)	Essential oil (mm)	(+) control: Ciprofloxacin (mm)	(-) control: SSS + FP (mm)	Essential oil (mm)	(+) control: Ciprofloxacin (mm)	(-) control: SSS + FP (mm)	Essential oil (mm)	(+) control: Ciprofloxacin (mm)	(-) control: SSS + FP (mm)
CIs	100	26	30	Nz	25	Nz	Nz	Nz	36	Nz
CId	100	25	28	Nz	24	Nz	Nz	Nz	27	Nz
CSI	100	24	29	Nz	27	Nz	Nz	Nz	33	Nz

Chattogram Veterinary And Animal Sciences University

CST OF CLOVE ESSENTIAL OIL

CST of *Staph. aureus* isolate by disc diffusion method (DDM) for CEO

CST of *E. coli* isolate by DDM for CEO CST of *P. aeruginosa* isolate by DDM for CEO

Chattogram Veterinary And Animal Sciences University

DISCUSSION

✤This study includes that clove powder has high amount of carbohydrate, dietary fiber and low in fat.

\diamond Density (ρ) and Refractive Index (n_D) were decreasing almost linearly with increasing temperature but viscosity (η) decreasing slowly with increasing temperature.

- Analysis using GC-MS was found to be the best method to identify even the minor components.
- Phenolic compounds are known to have antioxidant and antimicrobial properties.

✤The high concentration of eugenol in buds oil makes it potentially useful in the medicines because they exhibit antibacterial and antioxidant properties.

Chattogram Veterinary And Animal Sciences University

CONCLUSIONS

>In this study, I investigated the proximate analysis, physicochemical properties, phytocomponents, antioxidant activity, bioactive compound and antimicrobial activity of the essential oil isolated from *S. aromaticum* buds of Indonesia (CIs), India (CId) and Sri Lanka (CSl).

>Eugenol is the main component of clove essential oil.

> The study implied that clove and clove oils can be used as antibacterial and antiseptic agent.

Cloves can be used as a food preservative due to improve shelf life of foods.

Chattogram Veterinary And Animal Sciences University

Recommendations and future perspectives

 \checkmark I will give a chance and long period of time, minerals and broad microbial analysis may be considered for further analysis.

 \checkmark Chemical constituents, antifungal and antimutagenic activities may be considered for further analysis.

 \checkmark Clove bud essential oil Eugenol application for anti-oxidation.

 \checkmark Investigation of temperature, solvent type and other factors.

Chattogram Veterinary And Animal Sciences University

REFERENCES

Ajay K. 2014. Physico-chemical and natural products investigations of essential oil from the rhizomes of *Kaempferia galanga L*. Der Chemical Sinica. 5(2): 91-94.

Alam MN, Bristi NJ. 2013. Review on in vivo and in vitro methods evaluation of anti-oxidant activity. Saudi Pharmaceutical Journal. 21(2): 143-152.

Aziz S, Naher S, Abukawsar M, Roy Sk. 2012. Comparative studies on physicochemical properties and GC-MS analysis of essential oil of the two varieties of the Black Pepper (Piper nigrum Linn.). International Journal of Pharmaceutical and Phytopharmacological Research. 2(2): 67-70.

Ayoola GA, Lawore FM, Adelowotan T, Aibinu IE, Adenipekun E, Coker HA. 2008. Chemical analysis and antimicrobial activity of the essential oil of *Syzygium aromaticum* (clove). Afr J Microbial Res. 2: 162-166.

Abdel ME. Sulieman MO, Boshra EI, Amin A, Khalifa EI. 2007. Nutritive value of clove (*Syzygium aromaticum*) and detection of antimicrobial effect of its bud oil. Research Journal of Microbiology. 2: 266-271.

Chattogram Veterinary And Animal Sciences University

ACKNOWLEDGEMENTS

Research supervisor

Honorable Vice-Chancellor

Honourable Dean

Department Head

Monsur Ahmad Assistant Professor, Department of Applied Chemistry and Chemical Technology

Professor Dr. Goutam Buddha Das, PhD

Professor Dr. Jannatara Khatun Department of Animal Science & Nutrition

Md. Fahad Bin Quader Assistant Professor & Head, Department of Applied Chemistry and Chemical Technology

Department of Applied Chemistry and Chemical Technology Department of Animal Science & Nutrition Department of Food Processing and Nutrition Department of Microbiology

Chattogram Veterinary And Animal Sciences University

Do You Have Any Questions