

ANALYSIS OF HEAVY METALS IN DIFFERENT ORGANS (GILL, LIVER, KIDNEY AND MUSCLE) OF COMMERCIALLY IMPORTANT FISH SPECIES CAPTURED FROM CHATTOGRAM COASTAL AREA

Afifa Siddiqua

Roll No: 0118/03 Registration No: 00538 Session: 2018- 2019

The thesis submitted in the partial fulfillment of the requirements for the degree of Masters of Science in Food Chemistry and Quality Assurance

Department of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology

Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

December 2019

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned and author of this work, declare that the electronic copy of this thesis provided to the CVASU library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

AFIFA SIDDIQUA December, 2019.

ANALYSIS OF HEAVY METALS IN DIFFERENT ORGANS (GILL, LIVER, KIDNEY AND MUSCLE) OF COMMERCIALLY IMPORTANT FISH SPECIES CAPTURED FROM CHATTOGRAM COASTAL AREA

Afifa Siddiqua

Roll No: 0118/03 Registration No: 00538 Session: July-December, 2019

This is to certify that we have examined the above Master's thesis and have found that is complete, and satisfactory in all respects and that all revisions required by the thesis examination committee have

been made

Md. Fahad Bin Quader Supervisor

(Fahad Bin Quader)

.....

Chairman of the Examination Committee Department of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology

Chattogram Veterinary and Animal Sciences University

Khulshi, Chattogram-4225, Bangladesh

December 2019

ACKNOWLEDGEMENTS

All praises are due to the Almighty Allah for blessing me with the strength, aptitude and patience and enabled me to pursue higher education and to complete the thesis for the degree of Master's of Science (MS) in Food Chemistry and Quality Assurance.

First of all I want to acknowledge **National Science and Technology Fellowship 2018-2019** of Ministry of Science and Technology, Bangladesh for giving me the opportunity to take up this fellowship.

I pay heartily gratitude to Professor **Dr. Goutam Buddha Das**, Vice-Chancellor, Chattogram veterinary and Animal Sciences University, for giving special opportunity and providing such research facilities.

I would like to pay my sincere regards and thanks to **Md. Fahad Bin Quader**, Assistant Professor and Head, Department of Applied Chemistry and Chemical Technology, Chattogram veterinary and Animal Sciences University for his kind approval of my thesis.

With great pleasure, I would like to express my deepest sense of gratitude, sincere appreciation, profound regards and immense indebtedness to my respected teacher and research supervisor, **Md. Fahad Bin Quader**, Assistant Professor and Head, Department of Applied Chemistry and Chemical Technology, Chattogram Veterinary and Animal Sciences University for his scholarly guidance, sympathetic supervision, valuable suggestions, constructive and constant inspiration throughout the entire period of the study.

My deepest thanks and sincere gratitude goes to **sk. Istiaque Ahmad**, Assistant professor, Department of Fisheries Resource Management, Chattogram veterinary and Animal Sciences University, for his guidance and intellectual suggestions during my work.

I also offer my heartfelt thanks to Professor **Dr. Jannatara khatun**, Dean, Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, from the bottom of my heart for her immense administrative support to complete my research work.

I would like to express my heartfelt thanks to all **respected teachers** of faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, for their valuable teaching and continuous encouragement during the study period in FST.

I also express thanks to laboratory technicians and also cordial thanks to all stuff members of the Applied Chemistry and Chemical Technology laboratory, CVASU, Chattogram, for their cooperation during laboratory analysis.

I also offer my special thanks to my friend Zannatun Nur Popy for her support throughout the research tenure.

I would like to express my gratitude thankfully to my beloved parents Md Nasir Uddin and Shahnaj Parven for their love, blessings, care, dedicated efforts, valuable prayers, continuous support, endurance and dedication during my academic life. I also express thanks to my sisters for their support and valuable prayers during my research work.

The Author

DEDICATION

DEDICATED TO MY BELOVED PARENTS AND RESPECTED TEACHERS

TABLE OF CONTENTS

AUTHORIZATION	II
ACKNOWLEDGEMENTS	IV-V
LIST OF ABBREVIATIONS	IX
LIST OF APPENDICES	X-XI
LIST OF FIGURES	XII
LIST OF TABLES	XIII
ABSTRACT	XIV
CHAPTER-1: INTRODUCTION	1-5
1.1 Significance of the study	4
1.2 Aim and objectives	5
CHAPTER-2: LITERATURE REVIEW	6-22
2.1 Environmental status of the Chattogram coastal area	6
2.2 Wastewater pollution	7
2.3 Heavy metal pollution in the marine environment	7
2.4 Heavy metals uses and sources in the environment	9
2.4.1 Lead (Pb)	10
2.4.2 Chromium (Cr)	10
2.4.3 Arsenic (As)	11
2.5 Fish as bioindicators of water pollution	12
2.6 Bioaccumulation and metabolism of heavy metals	13
2.7 Heavy metal uptake by fish organs	14
2.7.1 Fish liver	14
2.7.2 Fish Kidney	15
2.7.3 Fish gill	15
2.7.4 Fish muscle	16
2.8 Toxic effects of heavy metals contamination on public	16
health	

2.9 Previous works done relevant to the present study	18
CHAPTER-3: METHODS AND MATERIALS	23-26
3.1 Sample collection	23
3.2 Dissection and preparation for digestion	24
3.3 Heavy metal analysis	24
3.3.1 Apparatus	24
3.3.2 Reagents	24
3.3.3 Procedures	24
3.4 Data analysis	26
CHAPTER-4: RESULTS	27-32
4.1 Organ-wise lead concentration	27
4.2 Organ-wise chromium concentration	27
4.3 Organ-wise arsenic concentration	28
4.4 Species-wise lead concentration	28
4.5 Species-wise chromium concentration	29
4.6 Species-wise arsenic concentration	29
4.7 Different heavy metal concentration in Hilsa ilisha	30
4.8 Different heavy metal concentration in Herpodon nehereus	30
4.9 Different heavy metal concentration in Pampus chinensis	31
4.10 Species-wise different heavy metal concentration	31
4.11 Organ-wise different heavy metal concentration	31
CHAPTER-5 DISCUSSIONS	33-38
CHAPTER-6: CONCLUSIONS	39
CHAPTER-7: RECOMMENDATION AND FUTURE	40
PERSPECTIVES	
REFERENCES	41-50
APPENDICES	51-64
BRIEF BIO-DATA OF THE AUTHOR	65

LIST OF ABBREBIATIONS

%	:	Percentage
SD	:	Standard Deviation
Pb	:	Lead
Cr	:	Chromium
As	:	Arsenic
Mg/Kg	:	Milligram per kilogram
MT	:	Metric Ton
PPM	:	Parts Per Million
WHO	:	World Health Organization
GDP	:	Gross Domestic Product
FAO	:	Food and Agricultural
		Organization
DoF	:	Department of Fisheries
AAS	:	Atomic Absorption Spectrometer
EDI	:	Estimated Daily Intake
G	:	Gram
UNEP	:	United Nations Environmental Program
µg/l	:	Microgram per liter
µg/g	:	Microgram Per gram
HNO ₃	:	Nitric Acid
\mathbf{P}^{H}	:	Amount of hydrogen ions available in a
		solution
NIFES	:	The National Institute of Nutrition and
		Seafood Research
EAA	:	Essential Amino Acid
DDT	:	Dichloro Diphenyl Trichloroethane
TSP	:	Triple Super Phosphate
IARC	:	International Agency for Research on
		Cancer
PTWI	:	Provisional Tolerable Weekly Intake
PTDI	:	Provisional Tolerable Daily Intake

LIST OF APPENDICES

APPENDIX	TITLE	
		NO
Α	Fish samples of the study collected from	51
	Chattogram coastal area	
В	Dissection and preparation for digestion	52-54
С	Digestion and Heavy metal analysis	55
D	Calculation for weight and length of fish species	56
Ε	Heavy metal concentration in kidney tissues of	57
	fish species	
	Chromium concentration in kidney of fish species	57
	Lead concentration in Kidney of fish species	57
		58
	Arsenic concentration in Kidney of fish species	
F	Heavy metal concentration in gill tissues of fish	59
	species	
	Chromium concentration in gill of fish species	59
	Lead concentration in gill of fish species	59
	Arsenic concentration in gill of fish species	60
G	Heavy metal concentration in Liver tissues of fish	61

	species	
	Chromium concentration in liver of fish species	61
	Lead concentration in liver of fish species	61
	Arsenic concentration in liver of fish species	62
H	Heavy metal concentration in muscle tissues of fish species	63
	Chromium concentration in muscle of fish species	63
	Lead concentration in muscle of fish species	63
	Arsenic concentration in muscle of fish species	64

LIST OF FIGURES

FIGURES	TITLE	PAGE
NO		NO
1	Sampling Area	23
2	Calibration Curve	25
3	Lead concentration in fish organs and muscle	27
4	Chromium concentration in fish organs and	27
	muscle	
5	Arsenic concentration in fish organs and	28
	muscle	
6	Lead concentration in different marine fish	28
	species	
7	Chromium concentration in different marine	29
	fish species	
8	Arsenic concentration in different marine fish	29
	species	
9	Different heavy metal concentration in Hilsa	30
	ilisa	
10	Different heavy metal concentration in	30
	Herpodon nehereus	
11	Different heavy metal concentration in	31
	Pampus chinensis	

LIST OF TABLES

TABLE	TITLE	PAGE
NO		NO
1	Heavy Metal Concentrations in Different Fish	32
	Species	
2	Heavy Metal Concentration in Different Fish	32
	Organs	

ABSTRACT

Chattogram is the biggest port city and also the coastal city of Bangladesh. Coastal resources provide here the opportunities to use the coast in different ways within the hazard prone environment. Pollution problem is acute here due to the stress caused by industrial and domestic effluent. The present study was carried out to evaluate whether there are any significant toxic effects of the widely exposed heavy metals on different organs of the commercially important marine fishes collected from Bengal marine bay near Chattogram city of Bangladesh. In this study, concentration of three heavy metals namely lead, arsenic and chromium were determined in four organs (gill, liver muscle and kidney) of three abundant fish species (Herpodon nehereus, Pampus chinensis and Hilsa ilisha). All heavy metals were determined and analyzed by Atomic Absorption Spectrophotometer. The obtained result revealed the highest concentrations of all three heavy metals were recorded in Herpodon nehereus which were not statistically different from those in Pampus chinensis and Hilsa ilisha. The organ wise lead concentration was recorded highest concentration in kidneys and gills of examined fishes with significant variation in muscles and liver. The scenario depicted quite differently in case of chromium where concentration in gills was found to be the highest with insignificant accumulation in other three organs. In case of Arsenic, kidneys and livers were the most exposed two organs in comparison to insignificant exposure to muscles and moderate accumulation in gills. Among all the three heavy metals, the accumulation trend of arsenic were the highest followed by lead in different examined fishes where exposure of chromium was found to be the lowest. The obtained values of arsenic accumulation were considered critical for human consumption as it exceeded minimum safe limits given by WHO and FAO but the concentration of lead and chromium were found to be safe for human consumption. The Chattogram coastal water might be highly polluted with arsenic due to effluent discharge from industries located near the sea. The values recorded from lead were increasingly approached to the safety values. Crucial steps should be taken to reduce anthropogenic discharges in the coastal water; high levels of pollution will not only affect aquatic life but will also invite socio-economic disasters.

Keywords: Heavy metals; Bay of Bengal; Fish organs; Bioaccumulation; Atomic absorption spectroscopy.