

POTENTIALITY OF Nannochloropsis sp. AS PARTIAL DIETARY REPLACEMENT OF FISHMEAL ON GROWTH, NUTRITIONAL PROFILE, PIGMENT, ANTIOXIDANTS AND BREEDING PERFORMANCE OF GUPPY (Poecilia reticulata)

Razia Sultana

Roll No. 0120/06

Registration No. 848

Session: 2020-2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Aquaculture

Department of Aquaculture

Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University

Chattogram-4225, Bangladesh

JUNE, 2021

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram

Veterinary and Animal Sciences University (CVASU) to lend this thesis to other

institutions or individuals for the purpose of scholarly research. I further authorize the

CVASU to reproduce the thesis by photocopying or by other means, in total or in part,

at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis

provided to the CVASU Library, is an accurate copy of the print thesis submitted,

within the limits of the technology available.

Razia Sultana

June, 2021

Ш

POTENTIALITY OF Nannochloropsis sp. AS PARTIAL DIETARY REPLACEMENT OF FISHMEAL ON GROWTH, NUTRITIONAL PROFILE, PIGMENT, ANTIOXIDANTS AND BREEDING PERFORMANCE OF GUPPY (Poecilia reticulata)

Razia Sultana

Roll No. 0120/06

Registration No. 848

Session: 2020-2021

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Dr. Helena Khatoon
Supervisor

Dr. Helena Khatoon

Chairman of the Examination Committee

Department of Aquaculture
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

JUNE, 2021

Acknowledgements

First and foremost, all the praises are for the almighty, Allah who bestowed me with

the ability and strength to accomplish this MS research work along with the thesis on

due time.

I would like to convey my earnest gratitude to my parents who brought me in the light

of earth and nursed me with all the facility I need to be succeeded in life.

I sincerely express my intense gratitude to my MS supervisor Dr. Helena Khatoon

(Assistant Professor & Head, Dept. of Aquaculture, CVASU) for her close supervision,

immense support and intellectual guidance during my whole research work.

I would like to have the opportunity to especially thank Bangladesh Fisheries

Research Institute (BFRI) for funding my research work.

My appreciation and gratitude is extended to UGC, Bangladesh for additional funding

required to accomplish my research work.

I would like to convey profound gratitude to Mohammad Redwanur Rahman

(Assistant Professor, Dept. of Aquaculture, CVASU), for his fantabulous support and

guidance during execution of field work of my research.

I would like to especially thank Chattogram Veterinary and Animal Sciences

University for granting me the laboratory facilities required for the research work and

also for providing me accommodation facilities at CVASU outreach campus Cox's

Bazar.

At the end, I would like to convey my sincere gratitude to Zannatul Nayma, Fardous

Ara Mukta, Mohammad Ekramul Haque, Sajjadul Mustaquim, all laboratory attendant

and well-wishers who directly or indirectly supported me during the course of this

study. Your kindness means a lot to me. May Allah bless you all.

Razia Sultana

June, 2021

IV

List of Abbreviations

Acronym	Definition
sp.	Species
DO	Dissolved Oxygen
ppt	Parts Per Thousand
рН	Power of Hydrogen
%	Percentage
°C	Degree Celsius
°F	Degree Fahrenheit
cm	Centimeter
in	Inch
mg	Milligram
g	Gram
h	Hour
W	Watt
K	Kelvin
ml	Milliliter
L	Liter
N	Normal
lbs	Pound-Mass or Pound
ln	Logarithm
Wt.	Weight
nm	Nannometer
rpm	Rotation Per Minute
v/v	Volume Per Volume
μg/g	Micro-Gram Per Gram
Nmol g-1	Nano Mole Per Gram
e.g.	Exempli Gratia (For Exemple)
ANOVA	Analysis of Variance

List of Figures

Description	Page No.
Microscopic view of <i>Nannochloropsis</i> sp.; a. 40x, b. 100x	5
Guppy (Poecilia reticulata); a. male, b. female	12
International market demand for ornamental fish	15
Proximate composition (% dry weight) of whole fish body fed	29
with different diets at the end of experiment	
Total carotenoid and astaxanthin concentration of fin and	30
muscle in guppy	
Level of lipid peroxidation found in guppy fed with	31
formulated diets after 100 consecutive days of culture period	
Hydrogen peroxide content of guppy fed with formulated	32
diets after 100 days of culture period	
Total fry production number from each treatment group	33
a. Nitrite nitrogen, b. total ammonia nitrogen, c. phosphate	34-35
phosphorus concentration of the water in tanks with different	
diet treatment groups	
	Microscopic view of <i>Nannochloropsis</i> sp.; a. 40x, b. 100x Guppy (<i>Poecilia reticulata</i>); a. male, b. female International market demand for ornamental fish Proximate composition (% dry weight) of whole fish body fed with different diets at the end of experiment Total carotenoid and astaxanthin concentration of fin and muscle in guppy Level of lipid peroxidation found in guppy fed with formulated diets after 100 consecutive days of culture period Hydrogen peroxide content of guppy fed with formulated diets after 100 days of culture period Total fry production number from each treatment group a. Nitrite nitrogen, b. total ammonia nitrogen, c. phosphate phosphorus concentration of the water in tanks with different

List of Tables

Sl. No.	Description	Page No.
1.	Chemical composition of Conway medium	17-18
2.	Biochemical properties of Nannochloropsis sp.	18
3.	Percent ingredients and proximate composition of the	19
	experimental diets	
4.	Different growth indices of guppy fed with experimental	27
	diets	
5.	Mean weekly fry production (individual number) in different	33
	treatment groups	
6.	Temperature, dissolved oxygen and pH in water from control	35
	and treatment tanks	

Abstract

In this study, fishmeal was partially replaced by Nannochloropsis sp. to evaluate its effect on growth, survival, proximate composition, pigment, antioxidants, breeding performance and water quality parameters in rearing guppy (Poecilia reticulate). Triplicate groups of fifteen uniform sized guppy fries were kept in each rectangular glass tank (20 L) maintaining the male and female ratio to 1:2. In diets, Nannochloropsis sp. was incorporated by replacing fishmeal at different levels-0 (control), 5 (N5), 10 (N10) and 15% (N15) and commercial feed (CMF) and fed to the fishes, twice a day at 5% of their body weight for 100 consecutive days. At the end of experiment, random sampling of fishes was done for growth parameter assessment and further laboratory analysis. Results showed that the lipid profile was significantly (P < 0.05) higher in 15% inclusion of *Nannochloropsis* sp. whereas there were no significant (P > 0.05) differences in protein and carbohydrate content in all groups. However, feed conversion ratio, specific growth rate, average daily growth, length increment and condition factor were relatively similar in all the groups except 15% and commercial feed. The carotenoid content of fin and muscle was significantly (P < 0.05) higher in 15% inclusion. In addition, the fish in 15, 10, and 5% inclusions performed significantly (P < 0.05) earlier breeding with a higher number of offspring, respectively than the control and commercial feed fed groups. Statistical analysis of the collected data also revealed that there was significant differences among treatments regarding survival and oxidative stress analyzed by hydrogen peroxide and lipid peroxidation assays. Survival rate was significantly (P < 0.05) higher in algal feed fed groups (N15, N10, and N5). H_2O_2 was significantly (P < 0.05) lower in N15 compared to the other groups whereas lipid peroxidation was lower in both N15 and N10. The addition of *Nannochloropsis* sp. to the feed improved and maintained good water quality during the culture period. In conclusion, results from this study indicate that selected marine microalga can improve reproductive performance through enhancing body coloration and lipid content of fish as well improving their survival rate with higher antioxidant properties might help in production of more hardy culture species for commercial aqua farming.

Keywords: Guppy, *Nannochloropsis* sp., survival, proximate composition, breeding performance, carotenoid, oxidative stress