

SEASONAL VARIATION OF PHYTOPLANKTON IN THE COASTAL WATERS OF CHATTOGRAM

MD. SHAFIUL ALAM ANIK

Roll No: 0120/04

Registration No: 852

Session: 2020-2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Marine Bioresource Science

Department of Marine Bioresource Science

Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University

Chattogram 4225, Bangladesh

AUGUST 2022

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Md. Shafiul Alam Anik

AUGUST 2022

SEASONAL VARIATION OF PHYTOPLANKTON IN THE COASTAL WATERS OF CHATTOGRAM

Md. Shafiul Alam Anik

Roll No.: 0120/04

Registration No.: 852

Session: 2020-2021

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Avijit Talukder Supervisor

•••••

Nayeema Ferdausy Hoque Co-supervisor

•••••

Dr. Md Sadequr Rahman Khan

Chairman of the Examination Committee

Department of Marine Bioresource Science

Faculty of Fisheries

Chattogram Veterinary and Animal Sciences University

Khulshi, Chattogram-4225, Bangladesh

AUGUST 2022

Dedicated To My Beloved Parents

ACKNOWLEDGMENTS

I am indebted to Almighty who enabled with courage, strength and patience to complete the research work and write up the dissertation successfully within due time of course.

I would like to expresses my gratitude and indebtedness to **Prof. Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU and **Dr. Mohammad Sadequr Rahman Khan**, Associate Professor and Head, Department of Marine Bioresource Science, Faculty of Fisheries, CVASU from the bottom of my heart for their immense administrative support to complete my research work.

I would like to convey my sincere thanks and gratitude to my supervisor **Mr. Avijit Talukder**, and co-supervisor **Nayeema Ferdausy Hoque**, Assistant Professor, Department of Marine Bioresource Science, Faculty of Fisheries, CVASU for their valuable support, advice, supervision and continuous guidance. It was really a great pleasure and amazing experience for me to work under their supervision.

My sincere thanks also go to **Ariful Islam Milon, Zannatul Nayma Shareen** for their cooperation during sample collection and examination in the laboratory which made my work easier. I am also acknowledging the Lab assistant, and supporting staffs of Oceanography lab, Faculty of Fisheries, CVASU for their help during sample examination in the laboratory.

Last but not least, I express my deepest sense of gratitude to my beloved parents for their immense sacrifice, blessings and encouragement.

The Author Md. Shafiul Alam Anik AUGUST 2022

Table of Contents		
Contents	Page No	
Title page	i	
Authorization	ii	
Signature page	iii	
Acknowledgements	v	
Table of contents	vi-vii	
List of tables	viii	
List of figures	ix	
List of appendices	х	
List of abbreviations	xi	
Abstract	xii	
Chapter-1: Introduction	01-05	
1.1 Background of the study	01-03	
1.2 Statement of the problem	03-04	
1.3 Research questions	04	
1.4 Objectives of the study	05	
1.5 Significance of this study	05	
Chapter-2: Review of Literature	06-09	
Chapter-3: Materials and Methods	10-15	
3.1 Study Area	10	
3.2 Sampling Design	11-15	
3. 2.1 Qualitative and quantitative estimations of plankton	11	
3.2.2 Identification process	12	
3.2.3Analysis of physico-chemical water quality parameters	12-15	
3.2.4 Statistical data analysis	15	
Chapter-4: Results	16-29	
4.1 Phytoplankton composition	16-19	
4.1.1 Station-wise variation	16	
4.1.2 Seasonal variation	17-19	
4.2 Determination of coastal primary productivity	19-21	
4.2.1 Chlorophyll-a	19	
4.2.2 Nutrients availability	19-20	
4.2.2.1 Nitrite	19	
4.2.2.2 Phosphate	19	
4.2.2.3 Silicate	19-21	
4.3 Other physico-chemical parameters	21-25	
4.3.1 Temperature	21	
4.3.2 Salinity	21	
4.3.3 pH	21	
4.3.4 EC	23	

4.3.5 TDS	23	
4.3.6 NaCl	23	
4.3.7 TSS	23	
4.3.8 DO	24-25	
4.4 Relationship of phytoplankton composition with nutrients	25-26	
4.5 Co-relation plot of physico-chemical water Quality parameters with phytoplankton	27	
4.6 Principal component analysis	28-29	
Chapter-5: Discussion	30-33	
5.1 Phytoplankton abundance and composition	30-31	
5.2 Coastal productivity	31-32	
5.2.1 Chlorophyll-a	31	
5.2.2 Nutrients availability	31-32	
5.3 Other physico-chemical parameters	32-33	
Chapter-6: Conclusion	34	
Chapter-7: Recommendations and Future Perspectives	35	
References	36-44	
Appendices	45-56	

List of Tables			
Serial No.	Description of the Tables	Page No	
01	Significance of phytoplankton (classes)	18	
02	Significance of phytoplankton (genus)	18-19	
03	Two way ANOVA results for different physico-chemical parameters	25	
04	Co-relation of phytoplankton composition With physico-chemical water quality parameters	28	
05	Rotated component matrix for water quality parameters	28-29	

Serial No.	Description of the Figures	Page No
01	Locations of the study area	10
02	Station-wise variation of phytoplankton classes and genus	16
03	Seasonal variation of phytoplankton Classes and genus	17
04	Station-wise and seasonal variation of chlorophyll-a (A and B), nitrite (C and D), phosphate (E and F) and silicate (G and H)	20
05	Station-wise and seasonal variation of temperature (A and B), salinity (C and D), pH (E and F) and EC (G and H)	22
06	Station-wise and seasonal variation of TDS (A and B), NaCl (C and D), TSS (E and F) and DO (G and H) in four Stations and Seasons	24
07	Station-wise and seasonal variation of nitrite with phytoplankton abundance	25
08	Station-wise and seasonal variation of phosphate with phytoplankton abundance	26
09	Station-wise and seasonal variation of silicate with phytoplankton abundance	26
10	Co-relation plot among different parameters: temperature, salinity, pH, EC, TDS, NaCl, TSS, DO, chlorophyll-a, nitrite, phosphate, silicate and phytoplankton abundance.	28
11	Rotated component space plot for water quality variables	29
12	Identification process	55
13	Microscopic images of different species of phytoplankton	56

List of Figures

List of Appendices			
Serial No.	Description of the Appendices	Page No	
01	One-way ANOVA for Phytoplankton abundance	45-47	
02	Two-way ANOVA for Physico-chemical parameters	47-52	
03	Descriptions of principle component analysis	53-55	
04	Research work	55-56	

List of Abbreviations		
Words	Abbreviation	
NO ₂	Nitrite	
PO_4	Phosphate	
SiO ₃	Silicate	
mL	Milliliter	
%	Percent	
Km	Kilometer	
Mg	Milligram	
М	Meter	
Psu	Practical salinity unit	
mg/L	Milligram per liter	
g/L.	Gram per liter	
°C	Degree Celsius	
µg/L	Microngram Per liter	
mS/cm	Milisiemens Per Centimer	
e.g	Example	
et al	And his associates	
etc	Et cetera	
Ppm	Parts Per million	
St	Station	
Cm	Centimeter	
TDS	Total Dissolved Solids	
TSS	Total suspended Solids	
Sig.	Significance	
MS	Master of Science	
<	Less than	
>	Greater than	

ABSTRACT

Phytoplankton has profound influence in ocean biogeochemical processes and contributes in ocean productivity. Bio-diversity, fisheries, and food production are directly impacted by ocean and coastal production, in the fight against climate change. Phytoplankton abundance, availability and its distribution are concerned to this study along the northeastern Bay of Bengal (BoB). Standard techniques were used to measure the fluctuations in coastal productivity (Chlorophyll-a), dissolved nutrients and other physicochemical parameters. To initiate the study, two coastal areas were selected as Cox's Bazar and Kutubdia, each having two sampling stations. The sampling were done following seasonal pattern of BoB as pre-monsoon, monsoon, post-monsoon and winter during the hydrological cycle 2021-22. During the sampling period, three classes of dominating phytoplankton were identified as Bacillariophyceae, Dinophyceae, and Coscinodiscophyceae. Among the three major groups of phytoplankton, total eleven prominent genera were identified. The highest amounts of phytoplankton was recorded in Cox's Bazar (st₁) as 3.931×10^3 Cells/ L while, in Kutubdia (st₃) the amount reported as 2.471×10^3 Cells/L during monsoon period. The Bacillariophyceae taxonomic family was the most common type of phytoplankton found in all samples. The number of phytoplankton was found to be positively correlated by Chlorophyll-a and nutrients availability. Chlorophyll (Chl-a) content was investigated 0.1986-0.741 μ g/L, whereas nutrients concentration (nitrite, phosphate, silicate) showed the crucial factors for phytoplankton abundance specified in statistical test. The other physico-chemical parameters also showed statistically significant changes (p<0.05) among the four seasons and stations. Furthermore, these finding may assist policymakers in enhancing management strategies for ensuring water quality and the phytoplankton population as it indicates a wide spectrum of primary productivity which come from coast or sea.

Keywords: Seasonal variation, phytoplankton, nutrients, northern BoB, Bangladesh