

BIOCHEMICAL AND MICROBIAL ANALYSIS OF SEAWEEDS AND THEIR VALUE ADDED PRODUCTS

Sharmin Jahan Shampa

Roll No.: 0120/06 Registration No.: 879 Session: 2020-2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fishing and Post-Harvest Technology

> Department of Fishing and Post-Harvest Technology Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **DECEMBER 2022**

AUTHORIZATION

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author

December 2022

BIOCHEMICAL AND MICROBIAL ANALYSIS OF SEAWEEDS AND THEIR VALUE ADDED PRODUCTS

Sharmin Jahan Shampa

Roll No.: 0120/06 Registration No.: 879 Session: 2020-2021

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made.

Dr. Md. Faisal Supervisor Tahsin Sultana Co-supervisor

Dr. Md. Faisal Chairman of the Examination Committee

Department of Fishing and Post-Harvest Technology Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

DECEMBER 2022

ACKNOWLEDGMENTS

All praises are due to **Almighty Allah** for blessing me with the strength, aptitude and patience and enabled me to pursue higher education and to complete the thesis for the degree of **Master of Science (MS) in Fishing and Post-Harvest Technology** under Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.

The author expresses her gratitude and indebtedness to **Professor Dr. Mohammed Nurul Absar Khan,** Dean, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, from the bottom of her heart for his immense administrative support to complete her research work.

The author would like to convey her deepest sense of gratitude, sincere appreciation, profound regards to her respected teacher and research supervisor **Dr. Md. Faisal**, Associate Professor and Head, Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for his unflinching co-operation, constant inspiration, warmth and indomitable guidance throughout the period of research work and preparation of the manuscript.

The author finds it a great pleasure in expressing her heartfelt gratitude to her research co-supervisor **Tahsin Sultana**, Assistant Professor, Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for her valuable suggestions for the completion of the research work.

The author expresses her gratefulness to Mr. Shiddarta Sankar Chowdhury, Wahidul Alam and all other laboratory technicians, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for their sincere cooperation.

The author finds it important to mention Md Ariful Islam Milon and S.M. Atikul Alam for their sincere support and help for the completion of the research work.

Last, but not the least, the author expresses her heartfelt gratitude to her beloved parents Md. Jaynal Abedin and Mrs. Sakhina Akter for their selfless love, blessings, care, dedicated efforts, valuable prayers and continuous support during the academic life.

The Author

CONTENTS

Titles	Page No.
Title Page	i
Authorization	ii
Signature Page	111
Acknowledgements	iv
List of Tables	vii
List of Figures	viii
List of Plates	ix
List of Abbreviations	х
Abstract	xi
Chapter 1: Introduction	1-3
1.1 Background	1-2
1.2 Significance of the Study	3
1.3 Objectives	3
Chapter 2: Review of Literature	4-11
2.1 Proximate Composition of Seaweeds	4-7
2.2 Proximate Composition of Value-Added Proc	lucts from Seaweeds 7-8
2.3 Heavy Metals Analysis	8-11
2.4 Microbial Analysis of Seaweeds	11
Chapter 3: Materials and Methods	12-22
3.1 Sample Collection	12
3.2 Preparation of Seaweeds for Biochemical and	d Microbial Analysis 12
3.3 Materials for Producing Value Added Produc	ts 12
3.3.1 Muffin Preparation	13
3.3.2 Biscuit Preparation	13
3.4 Analytical Procedures	14
3.4.1 Protein	14
3.4.2 Fiber	15
3.4.3 Lipid	16
3.4.4 Ash	17

3.4.5 Moisture	17
3.5 Bacteriological Analysis of the Fresh Seaweeds	18
3.5.1 Analytical Procedures	18
3.5.2 Sample Preparation for Standard Plate Count	18
3.5.3 Total Plate Count	19
3.5.4 Enumeration of Microorganisms	19
3.5.4.1 Detection of Vibrio cholera, V. vulnificus, and V.	
parahaemolyticus	19
3.5.4.2 Detection of Salmonella and Shigella spp.	20
3.5.4.3 Detection of E. coli	21
3.6 Sample Preparations for Heavy Metal Analysis	21
3.7 Statistical Analysis	22
Chapter 4: Results	23-32
4.1 Proximate Composition of Seaweeds	23-25
4.2 Proximate Composition of Seaweed Products	25-28
4.3 Microbial Analysis of Seaweeds	28-29
4.4 Analysis of Heavy Metal Concentration in Seaweeds	30-32
Chapter 5: Discussion	33-37
5.1 Proximate Analysis of Seaweeds	33-34
5.2 Proximate Analysis of Seaweed Products	34-35
5.3 Microbial Analysis of Seaweeds	35
5.4 Heavy Metals Analysis	36-37
Chapter 6: Conclusions	38
Chapter 7: Recommendations	39
References	40-48
Appendix	49
Brief Biography of the Author	50

LIST OF TABLES

Table No.	Title	Page No.
1	Proximate composition (% wet weight of sample) of collected wet sample: <i>Gracilaria</i> sp., <i>Enteromorpha</i> sp., and <i>Ulva</i> sp.	23
2	Proximate composition (% dry weight of sample) of lab dried sample: <i>Gracilaria</i> sp., <i>Enteromorpha</i> sp., and <i>Ulva</i> sp.	24
3	Proximate composition (% dry weight of sample) of market dried sample: <i>Gracilaria</i> sp., <i>Enteromorpha</i> sp., and <i>Ulva</i> sp.	25
4	Proximate composition (% dry weight of sample) of biscuits produced from seaweeds and without seaweed	26
5	Proximate composition (% dry weight of sample) of muffins produced from seaweeds and without seaweed	26
6	Total bacterial loads in seaweed samples	28
7	Pathogenic bacteria in experimented seaweeds	29
8	Mean metal content ± Standard Deviation (SD) in seaweed samples (mg/kg)	30

Figure No.	Title	Page No.
1	Determination of protein content	14
2	Determination of fiber content	15
3	Determination of lipid content	
4	Determination of ash content	17
5	Determination of moisture content	17
6	Determination of Vibrio sp.	19
7	Determination of Salmonella spp.	20
8	Determination of E. coli	21
9	Proximate composition of different biscuits	27
10	Proximate composition of different muffins	28
11	Graphical presentation of heavy metals	32

LIST OF FIGURES

Plate no.	Title	Page no.
1	Ulva sp.	12
2	Enteromorpha sp.	12
3	Gracilaria sp.	12
4	Control	13
5	Gracilaria muffin	13
6	Enteromorpha muffin	13
7	Ulva muffin	13
8	Enteromorpha biscuits	14
9	Gracilaria biscuits	14
10	Ulva biscuits	14
11	Control	14
12	Titrated protein sample	15
13	Fiber content after keeping in hot air oven	15
14	Lipids in dried seaweed samples	16
15	Lipids in value added products	16
16	Ash content of the products	17
17	Moisture content of value added products	17
18	Collection of samples	50
19	Preparation of ingredients for value added products	50
20	Microbial analysis of seaweeds	50

LIST OF PLATES

Acronym	Definition
g	Gram
µg day⁻¹	Micro Gram Per Day
mg	Milligram
kg	Kilogram
ml	Milliliter
cm^2	Square Centimeter
t	Tons
d wt.	Dry Weight
TDF	Total Dietary Fiber
CFU	Colony Forming Unit
BCF	Bioconcentration Factor
ANOVA	Analysis of Variance
As	Arsenic
Cd	Cadmium
Со	Cobalt
Cr	Chromium
Ni	Nickel
Pb	Lead
Mn	Manganese
Se	Selenium
Cu	Copper
Fe	Iron
SD	Standard Deviation
Zn	Zinc
Al	Aluminum
Hg	Mercury
Ba	Barium
Sr	Strontium
Sb	Antimony

LIST OF ABBREVIATIONS

ABSTRACT

Despite a paucity of public data, seaweed output in Bangladesh is expanding rapidly day by day. Three raw seaweed species (green seaweed Enteromorpha sp., red seaweed Gracilaria sp., and green seaweed Ulva sp.) were collected from the nature and dry seaweeds were purchased from a market in Nuniarchora, Cox's Bazar, Bangladesh. The samples were used to determine the proximate composition of the seaweeds as well as the presence of pathogenic bacteria and heavy metals. To create value-added items like biscuits and muffins, collected samples were cleaned with saltwater, dried in an oven, crushed in a grinder, and stored in a zip-lock bag at room temperature ($25 \pm 2^{\circ}$ C). The samples' proximate composition was determined under wet, lab-dried, and market-dried conditions. Gracilaria sp. had the highest crude protein content 3.48% in wet basis and (14.60-20.90%) in dry basis, followed by *Ulva* sp. 2.78% wet wt. while (10.80-13.92%) dry basis and Enteromorpha sp. contains lowest in both wet (1.64%) and dry basis (10.43-11.78%). Gracilaria sp. had the maximum crude fiber content (2.98-16.67%) d wt., followed by Ulva sp. (3.77-6.31%) d wt., and Enteromorpha sp. (2.96-5.66%) d wt. based. The lowest levels of crude lipid were observed in three samples: Gracilaria sp. (0.13-0.35%) d wt., Enteromorpha sp. (0.19-0.39%) d wt., and Ulva sp. (0.24-1.01%) d wt. based. Total bacterial load and pathogenic bacteria such as Salmonella sp., Shigella sp., E. coli, V. vulnificus, V. parahaemolyticus, and V. cholera were observed; heavy load was found in *Ulva* sp. (13.50×10^6) CFU/g and lowest in *Enteromorpha* sp. (2.23×10^6) CFU/g; all the studied pathogenic bacteria were present in Ulva sp. and Enteromorpha sp. ICPMS-2030 was used to examine the concentration of heavy metals, and Gracilaria sp. had the greatest concentration of the elements (As, Fe, Mn, Zn, Ni, and Pb). Biscuits had a greater crude protein content (10.60% in Ulva biscuits) in value-added items than muffins (8.49% in Ulva muffins). Compared to biscuits (65.64% in Enteromorpha biscuits), muffins (32.34% in Enteromorpha muffins) had a lower carbohydrate level.

Keywords: Seaweed, Heavy Metals, IPCMS-2030, *Enteromorpha* sp., *Gracilaria* sp., *Ulva* sp.