

IN-SILICO EVALUATION OF BIOACTIVITY OF PHYCOCYANIN FROM RED ALGAE

Razia Sultana Roll No. 0219/15 Registration No. 776 Session: 2019-20

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Applied Human Nutrition and Dietetics

Department of Applied Food science & Nutrition

Faculty of Food Science & Technology

Chattogram Veterinary and Animal Sciences University,

Chattogram-4225, Bangladesh

August, 2022

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chittagong Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available

IN SILICO EVALUATION OF BIOACTIVITY OF PHYCOCYANIN FROM RED ALGAE

Razia Sultana

Roll no: 0219/15 Registration no: 776 Session: 2019-20 (July-Dec)

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made.

•••••

Dr. Md Abdul Alim (Supervisor)

Department of pathology and parasitology Faculty of Doctor of Veterinary Medicine, CVASU. Kazi Nazira Sharmin (Co-investigator) Department of Applied Food Science and Nutrition Faculty of Food science and Technology, CVASU

••••••

Kazi Nazira Sharmin

Chairman of the Examination Committee

Department of Applied Food Science and Nutrition Faculty of Food science and Technology, CVASU

Department of Applied Food science & Nutrition Faculty of Food Science & Technology Chattogram Veterinary and Animal Sciences University, Chattogram-4225, Bangladesh

August, 2022

PLAGIARISM VERIFICATION

Title of the Thesis: In silico evaluation of bioactivity of phycocyanin from red algae . Name of the student: Razia Sultana Roll number: 0219/15 Reg. number: 776 Department: Applied Food Science and Nutrition Faculty: Food Science and Technology Supervisor: Dr. Md Abdul Alim

For office use only

The thesis may/may not be considered for the evaluation.

Dr. Md Abdul Alim Professor Department of pathology and parasitology Faculty of Doctor of Veterinary Medicine

DEDICATED

to

MY BELOVED PARENTS

ACKNOWLEDGEMENTS

All credit goes to Almighty Allah for blessing me with the strength, persistence to pursue higher education and complete the thesis for the degree of Masters of Science (MS) in Applied Human Nutrition and Dietetics under the Department of Applied Food Science and technology, at Chattogram Veterinary and Animal Sciences University, Bangladesh.

I pay gratitude to Professor **Dr. Goutam Buddha Das**, Vice-Chancellor, Chattogram Veterinary and Animal Sciences University (CVASU) for giving special opportunities and providing such research facilities.

I would like to convey my heartfelt gratitude and indebtedness to my supervisor **Professor Dr. Md. Abdul Alim**, Department of Pathology and Parasitology in Faculty of Veterinary Medicine, at Chattogram Veterinary and Animal Sciences University, Bangladesh, for his advice and suggestions. His unwavering support, insightful recommendations, constructive criticism, guidance encouraged me to persevere throughout this study and thesis preparation.

Also I am very much grateful to **Kazi Nazira Sharmin**, Head and Associate professor, Department of Applied Food Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Bangladesh, for her befitting enthusiasment, charitable guidance in carrying out the research work.

I would like to express cordial thanks to my loving friends and well-wishers for their cooperation, cheerfulness and inspiration during the course of this study. I also express my heartfelt respects and thanks to my beloved parents and brothers for their understanding, inspirations, support, kindness blessings, and endless love to complete this study.

Contents	Page No
Authorization	ii
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENT	vii-viii
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF ABBREVIATION	xi-xii
ABSTRACT	xiii
Chapter 1: INTRODUCTION	1
1.1 Significance of the research	3
1.2 Research objectives	3
Chapter 2: REVIEW OF LITERATURE	4
2.1 Red Algae	4
2.1.1 Characteristics of Red algae	4
2.1.2 Nutritional Composition of Red Algae	5
2.1.3 Health benefits of Bioactive compounds of red algae	5
2.2 Red Algae species	6
2.3 Red seaweed Protein sequences	6
2.4 Evaluation of Red Algae bioactive peptides through BIOPEP-	
UWM database	7
2.5 In silico proteolysis	7
2.6 Virtual screening and characterization of novel tri-peptide	7-8
2.7 MALDI-TOF mass spectrometry	8-9
2.8 Protein Hydrolysis	9
2.8.1. Factors affecting protein hydrolysis	9-10
2.9 Protein Extraction	10
2.9.1 Method 1 (urea extraction and acetone precipitation)	10-11
2.9.2 Method 2 (urea extraction, ultracentrifugation and acetone	
precipitation)	11
2.9.3 Method 3 (urea extraction, ultracentrifugation, and trichloro acetic acid(TCA)/acetone precipitation)	11
2.9.4 Method 4 (phenol extraction)	11
2.9.5 Method 5 (phenol extraction and desalting steps)	11-12

TABLE OF CONTENTS

2.10 Bioactive peptides	12
2.10.1 Angiotensin-converting enzyme (ACE) inhibitors2.10.2 DPP IV inhibitors2.10.3 Alpha-glucosidase inhibitors	12 12-13 13
2.11 In silico approach	13-14
2.11.1. Importance of in silico approach	14
2.11.2. Advantages and Limitations of in silico approach Chapter 3: MATERIALS AND METHODS	14 15
3.1. Sample for protein sequences	15
3.2. Red seaweed protein sequences	15-16
3.3 Evaluation of Red Algae species as potential precursor of	
bioactive peptides through BIOPEP-UWM database	17-19
3.4 In silico proteolysis to release of potential peptides	19-21
3.5. Protparam tools	21
3.5.1 Peptide Ranker	22
3.5.2 Peptide Calculator	22
3.5.3 Bioinformatics tool for allergenicity prediction	23
3.5.4 Toxicity Prediction	23-24
3.5.5 Peptide Cutter	24-25
3.5.6 AHTpin	26
Chapter 4: RESULTS	26
4.1 Protein identified by MALDI-TOFF mass	
Spectrometry	26
4.2 Essential amino acid percentage	27
4.3 In silico analysis	28-36
Chapter 5: DISCUSSION	37
5.1 Sequences of selected protein	37
5.2 The prospect of red algae as precursor for bioactive peptides	37-38
5.3 In Silico proteolysis of red algae protein for phycocyanin	38-39
5.4 Virtual Screening and Characterization of Novel peptide	39
Chapter 6: CONCLUSION	40
Chapter 7: RECOMMENDATIONS & FUTURE PERSPECTIVE	41
References	42-46
Appendix (Profiles for potential biological activity)	47 -148
Brief Biography	149

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	1 Nutritional composition of Red algae	
4.1	4.1 protein name & accession number used in in silico analysis	
4.2	4.2 Essential amino acid composition	
4.3	4.3 Number of potential bioactive peptides and potential biological activity (B) of identified proteins using BIOPEP	
4.4	The frequency of occurrence of peptides with a given activity (A) in selected protein sequences	29
4.5.1	The predicted efficiency of release of bioactive fragments from selected red algae protein by in silico proteolysis for ACE inhibitor	30
4.5.2	4.5.2 The predicted efficiency of release of bioactive fragments from selected red algae protein by in silico proteolysis for DPP IV inhibitor	
4.5.3	The predicted efficiency of release of bioactive fragments from selected red algae protein by in silico proteolysis for Alpha glucosidase inhibitor	32
4.6	Bioactive peptides predicted to be released from red algae protein based on in silico enzymolysis	33
4.7	Predicted potential novel peptide released from red algae protein	34-36

LIST OF FIGURES

Figure no.	Title	Page no.
Figure 3.1	NCBI and FASTA format for protein sequence	15-16
Figure 3.2	Profiles of potential Biological activity	17-18
Figure 3.3	Degree of Hydrolysis	19-20
Figure 3.4	Protparam tool using protein sequence	21
Figure 3.5	PeptideRanker tool for peptide score	22
Figure 3.6	PepCalc for physico-chemical property	22
Figure 3.7	Allertop for Allergenicity prediction	23
Figure 3.8	ToxinPred for toxicity prediction	23-24
Figure 3.9	Determination of resistance of Digestion	24
Figure 3.10	IC50 value Determination	25

LIST OF ABBREVIATION

ACE	Angiotensin-converting enzyme
DPE IV	Dipeptidyl peptidase IV
E/S	Enzyme to substrate ratio
EU	Experimental unit
HCL	Hydrochloric acid
KCL	Potassium chloride
EDTA	Ethylene di-amine tetra acetic acid
Ala	Alanine
Arg	Arginine
Asn	Asparagine
Asp	Aspartic acid
Asx	Asparagine or aspartic acid
Cys	Cysteine
Glu	Glutamic acid
Gln	Glutamine
Gly	Glycine
His	Histidine
Не	Isoleucine
Leu	Leucine
Lys	Lysine
Met	Methionine
Phe	Phenylalanine
Pro	Proline
Ser	Serine
Thr	Threonine
Trp	Tryptophan

Tyr	Tyrosine
Tyr	Tryptophan
Val	Valine
kda	Kilodalton
%	percentage
&	And
Et al	Et alii/et aliae/et alia

ABSTRACT

Phycocyanin (PC) is a neutraceutical compound with biological action which is extracted and purified from seaweeds. It is found in red algae, blue-green algae and different seaweeds. According to the Algae Base dynamic species count, there are roughly 10,000 species of seaweeds, the vast majority of which are red algae. The percentage of protein in dried red seaweed varies between 20 and 47 percent (dw), so it's proteins are potential precursors for showing bioactivity. In this present study, seventeen proteins of red algae (Pyropia endiviifolia, Pyropia pulchra, Neopyropia yezoensis, Neoporphyra haitanensis, Pyropia fucicola, Pyropia kanakaensis, Neoporphyra dentata, Neoporphyra dentata, Galdieria sulphuraria, Polysiphonia urceolata) have been selected as potential precursors of bioactivity based on in silico approach. In silico analysis of Phycocyanin performed high numbers of peptides angiotensin-I-converting enzyme (ACE-I), dipeptidyl peptidase-IV (DPP-IV) and Alpha glucose inhibitor. Chymotrypsin, papain, thermolysin and stem bromelain have been used in-silico proteolysis. For that reason, 45 different tripeptides and dipeptides are tested to see whether any of them can be considered novel bioactive peptides. The distinctive features of the peptides have been explored using Peptide Ranker, PepCalc, Peptide Cutter, ToxinPred, AllerTop, and AHTpin. Bioinformatics analysis indicates that the vast majority of the peptides are likely to be non-toxic, very promising, and safe for use. Future *in-vitro* and *in-vivo* studies of the bioactivity of phycocyanin from red algae can be based on these results. This research emphasizes the promise of phycocyanin from red algae as a base material for the creation of novel meals and medicines.

Keywords: Red algae, Phycocyanin, Bioactive peptide, In silico, ACE inhibitor, DPP IV inhibitor, Alpha Glucose inhibitor.