ACKNOWLEDGEMENT

All sorts of praises go to the Almighty Allah, Who enabled the author to complete this work successfully.

The author wishes heartfelt gratitude to her supervisor **Prof. Dr. Sharmin Chowdhury**, Department of Pathology and Parasitology (DPP), CVASU for her valuable supervision and guidance.

The author gratefully acknowledges all teachers at DPP, CVASU for their valuable provision of information during the research period and also thanks to all the staff of DPP and One Health Institute for their cordial assistance.

The author sincerely thanks **Prof. Himel Barua**, Head, Department of Microbiology and Veterinary Public Health, CVASU for his suggestions and guidance. It's the author's immense pleasure to thank **Dr Tridip Das**, Scientific Officer in Poultry Research and Training Centre, providing support to extend the spectrum of her thesis work.

The author humbly thanks to **Dr. Sirazul Islam**, **Dr. Chandan Nath**, **Dr. F. M. Yasir Hasib**, **Dr. Pronesh Dutta**, **Dr. Sahidur Rahman**, **Seemanta Das** and **Asma Sadia Authoy** for their suggestion, encouragement and support during research work.

The author would like to express her deep sense of gratitude to Advance Study and Research, CVASU, Bangladesh Agricultural Research Council (BARC) and Ministry of Science and Technology, People's Republic of Bangladesh for providing necessary research funds.

Finally, the author expresses her thankfulness to her parents, seniors, juniors and well- wishers.

THE AUTHOR

June, 2020

Table of content

Acknowledgement	i
List of content	
List of acronyms and symbols used	iv
List of tables	vi
List of figures	viii
Summary	Х
Introduction.	12
Review of literature	16
2.1 Antibiotics and their developmental history	16
2.2 Resistance to antibiotics	18
2.2.1 Natural resistance	18
2.2.2 Acquired resistance	19
2.2.3 Mechanism of Antibiotic resistance	20
2.3 Some Leading Resistant Pathogens	23
2.4 AMR bacteria in livestock (Bacteria of concern)	23
2.5 An overview of E. coli and S. aureus; most frequently noticed	24
bacteria in Livestock products	
2.5.1 Structure of <i>E. coli</i> and <i>S. aureus</i> .	
2.5.2 Virulence factors	25
2.5.3 Method of detecting S. aureus	26
2.5.4 Different methods for detection of <i>E. col</i> i	28
2.5.5 Other methods	30
2.5.6 Diseases caused by S. aureus	30
2.5.7 Diseases caused by E. coli	32
2.5.8 Methicillin resistant S. aureus	33
2.5 Importance of bovine milk as sample	35
2.6 Transmission of antimicrobial resistance via livestock	39
2.7 Public Health Importance of Antimicrobial Resistance	45
2.8 Managing resistance in farm animals	47
2.9 One-Health approaches to check the AMR issue	48
Materials and methods	
3.1Study area	51
3.2 Sample collection duration	51
3.3 Study population	52
3.4 Sample collection procedure	52

3.5 Questionnaire used for sample collection	52
	52
3.6 Bacteriological Investigation	52
3.6.1 Isolation of <i>S. aureus</i>	52
3.6.2 Isolation of <i>E. coli</i>	53
3.7 Preservation of isolates	55
3.8 Molecular detection of <i>E. coli</i> and <i>S. aureus</i>	55
3.8.1 Sub-culturing on blood agar	55
3.8.2 DNA extraction from the isolates	55
3.9 Screening of antimicrobial resistance pattern of <i>E. coli</i>	57
3.9.1 Procedure of cultural sensitivity test (CS) test	59
3.10 Polymerase chain reaction (PCR) to test for the presence	59
resistant genes	
3.10.1 PCR for resistant genes in E. coli	62
3.10.2 PCR for resistant genes in S. aureus	63
3.11 Statistical analysis	65
Results	66
4.1 S. aureus isolated from bovine milk	66
4.2 E. coli isolated from bovine milk.	67
4.3 Antimicrobial resistance profile of <i>S. aureus</i> and <i>E. coli</i>	68
4.4 Prevalence of Antimicrobial Resistant (AMR) Genes in <i>S</i> .	72
aureus.	
4.5 Prevalence of Antimicrobial Resistant (AMR) Genes in E. coli.	73
4.6 Overall Multidrug Resistance Pattern of <i>S. aureus</i> and <i>E.coli</i> .	75
4.7 Risk factors associated with emergence of <i>S. aureus</i> and <i>E. coli</i>	79
4.8 Risk factors associated with emergence of occurrence of AMR <i>S</i> .	82
aureus and E. coli	
4.9 Multivariable analysis	84
4.10 GenBank accession number for Methicillin Resistant <i>S. aureus</i>	84
Discussion.	85
Conclusion	90
Limitation	91
Appendix	92
References	94
Biography	114

Abbreviation and	Elaboration
symbols	
AMR	Antimicrobial Resistance
MDR	Multidrug resistant
%	Percent
>	Greater than
<	Less than
2	Greater than equal
<u> </u>	Less than equal
=	Equal to
°C	Degree Celsius
BHI	Brain Heart Infusion
bp	Base Pair
BPW	Buffered Peptone Water
CDC	Center for Disease Control and Prevention
CFU	Colony Forming Unit
CI	Confidence Interval
CLSI	Clinical and Laboratory Standards Institute
CRE	Carbapenem Resistant Enterobacteriaceae
CSE	Centre for Science and Environment
CS	Culture Sensitivity
CVASU	Chittagong Veterinary and Animal Sciences
	University
DAEC	Diffusely Adherent E. coli
DNA	De-oxy Ribonucleic Acid
EaggEC	Enteroaggregating E. coli
E. coli	Escherichia coli
EHEC	Enterohemorrhagic E. coli
EMB	Eosin Methylene Blue
ESBL	Extended Spectrum β-Lactamase
ETEC	Enterotoxigenic E. coli
Kb	Kilo Base

LIST OF ACRONYMS AND SYMBOLS USED

μL	Microliter
mA	Milli ampere
MCR	Plasmid-Mediated Colistin Resistance
MFS	Major Facilitator Superfamily
mL	Milliliter
Mm	Millimeter
MRSA	Methicillin Resistant Staphylococcus aureus
OR	Odds Ratio
PBP	Penicillin Binding Protein
PCR	Polymerase Chain Reaction
Rpm	Rotation Per Minute
STEC	Shiga Toxigenic E. coli
ST	Heat Stable Toxin
Stx	Shiga Toxin
TAE	Tris Acetate EDTA
VTEC	Verotoxigenic E. coli
WHO	World Health Organization
w/v	Weight/Volume
СТ	Colistin sulphate
CIP	Ciprofloxacin
TE	Tetracycline
С	Chloramphenicol
CRT	Ceftriaxone
SXT	Sulfamethoxazole & Trimethoprim
CN	Gentamycin
ENR	Enrofloxacin
AMP	Ampicilin

LIST OF TABLES

Table 2.1	Antibiotics according to their mode of action (Wanda., 2018)	16
Table 2.2	Bacterial targets of antibiotics in clinical use (Chellat et al.,	18
	2016)	
Table 2.3	Organism and resistance pattern	19
Table 2.4	Scientific taxonomy of <i>E.coli</i> and <i>S. aureus</i>	25
Table 2.5	Worldwide Prevalence of AMR gene in <i>S. aureus</i> isolated	36
	from bovine milk	
Table 2.6	Worldwide Prevalence of AMR gene in <i>E. coli</i> isolated from	38
	bovine milk	
Table 3.1	Typical biochemical reactions shown by any isolate belonging	54
	to E. coli	
Table 3.2	Oligonucleotide primer sequence of 16s rRNA and Spa genes	56
Table 3.3	Cycling conditions used during PCR for detection 16s rRNA	56
	of <i>E. coli</i>	
Table 3.4:	Cycling conditions used during PCR for detection spa gene of	57
	S. aureus	
Table 3.5	Concentrations and diffusion zone breakpoints for resistance	58
	against antimicrobials standard for Escherichia coli and	
	Staphylococcus aureus isolates (CLSI, 2011)	
Table 3.6	Oligonucleotide primer sequences used to detect the selected	60
	antimicrobial gene in E. coli	
Table 3.7	Reagents used for PCR amplifications of the resistance genes	61
Table 3.8	Contents of each reaction mixture of PCR assay	61
Table 3.9	Cycling conditions used during PCR for detection of	62
	resistance genes	
Table 3.10	Primers used for the multiplex polymerase chain reaction	64
	results systems for the identification of S. aureus and related	
	antibiotic resistance genes	
Table 4.1	Antimicrobial resistance pattern of S. aureus & E. coli	69
	isolates	
Table 4.2:	Antibiogram profile of <i>S. aureus</i> isolates isolated from	73
	bovine milk(Phenotypically and genotypically found resistant	

	isolates, n=26)	
Table 4.3:	Antibiogram profile of <i>E. coli</i> isolates isolated from bovine milk(Phenotypically and genotypically found resistant isolates, (n=20)	74
Table 4.4:	Output of univariable logistic regression analysis to identify the effect of different management and hygiene related factors on presence of <i>S. aureus</i> in bovine milk sample	79
Table 4.5:	Multivariate logistic regression model of risk factors for the presence of in <i>S. aureus</i> bovine milk sample	80
Table 4.6:	Output of univariable logistic regression analysis to identify the effect of different management and hygiene related factors on the presence of <i>E. coli</i> in bovine milk sample	81
Table 4.7:	Multivariate logistic regression model of risk factors for the presence of <i>E. coli</i> in bovine milk sample	82
Table 4.8:	Output of univariable logistic regression analysis to identify the effect of different AMR related factors on occurrence of AMR <i>S. aureus</i> in dairy farms	82
Table 4.9:	Output of univariable logistic regression analysis to identify the effect of different AMR related factors on the occurrence of AMR <i>E.coli</i> in dairy farms	84

LIST OF FIGURES

Figure 2.1	Antibiotics, effects and mechanisms of resistance	21
Figure 2.2	The U.S. Centres for Disease Control and Prevention;	40
	Transmission of anti microbialresistance	
Figure 2.3	Global AMR consequence in near future	46
Figure 2.4	Worldwide economic loss due to AMR	46
Figure 2.5	One Heath concept	49
Figure 3.1	Geographical locations of the sites of different kinds of	51
	samples collected for thestudy	
Figure 4.1	Staphylococcus aureus on Mannitol salt agar plates	66
Figure 4.2:	Staphylococcus aureus on blood agar plates	66
Figure 4.3	Catalase positive test	66
Figure 4.4	Coagulase positive test	66
Figure 4.5	Gram's staining properties of Staphylococcus aureus	67
Figure 4.6	Result of PCR assay for the detection of the spa gene(variable	67
	bp)	
Figure 4.7	<i>E. coli</i> producing large pink colour growth on McConkey agar	67
Figure 4.8	Metalic green sheen on EMB agar	67
Figure 4.9	<i>E. coli</i> ; Indole positive	68
Figure 4.10	Gram's staining property of E. coli	68
Figure 4.11	PCR assay for the detection of the 16s rRNA gene; Lane L:	68
	1kb plus DNA ladder; Lane P: Positive control;	
	Lane N: Negative control; Lane 1-5: gene-16s rRNA sized	
	(585bp) amplicon	
Figure 4.12	Bacterial zone of inhibition	69
Figure 4.13	Comparing inoculum with McFarland Standard	69
Figure 4.14	Antibiogram profile of S. aureus isolates isolated from bovine	71
	milk	
Figure 4.15	Antibiogram profile of <i>E. coli</i> isolates isolated from bovine	71
	milk	
Figure 4.16	Overall prevalence estimates of resistant genes from S.	72
	aureus isolates	
Figure 4.17	Overall prevalence estimates of resistant genes from E. coli	74
	isolates	

Figure 4.18	Multidrug Resistant Pattern of S. aureus and E. coli	75
Figure 4.19	Multiplex PCR assay for the detection of the genes; Lane L:	76
	1kb plus DNA ladder; Lane a: <i>nuc</i> gene (395 bp); Lane b:	
	ermC (190 bp); Lane c: tetM (351 bp) amplicon	
Figure 4.20	PCR assay for the detection of the genes; Lane L: 1kb plus	76
	DNA ladder;	
	Lane a: <i>blaZ</i> gene (517bp); Lane b: <i>tetK</i> (169bp) amplicon	
Figure 4.21	PCR assay for the detection of mecA62 (bp) gene; Lane L:	77
	1kb plus DNA ladder; Lane P: Positive control; Lane	
	N:Negative control	
Figure4.22:	PCR assay for the detection of the <i>blaCTX-M</i> gene (557 bp)	77
	in E. coli	
Figure 4.24	PCR assay for the detection of the $tetK$ gene (502bp) in E.	78
	<i>coli</i> ; Lane L: 1kb plus DNA ladder; Lane1-11: <i>tetK</i> gene	
Figure 4.25	PCR assay for the detection of the <i>gyrA</i> gene (312bp) in <i>E</i> .	78
	coli; Lane L: 1kb plus DNA ladder; Lane1-15: gyrA gene	
Figure 4.26	PCR assay for the detection of the <i>sul2</i> gene (721bp) in <i>E</i> .	79
	<i>coli</i> ; Lane L:	
	1kb plus DNA ladder; Lane1-5: sul2 gene.	
L		

SUMMARY

Antimicrobial resistance (AMR) is known as a silent pandemic; an emerging global public health issue. The problem of AMR is similarly salient and prevalent in animals. From a public health perspective, AMR in dairy cattle can also jeopardize human health by the potential dissemination of AMR pathogens to humans via consumption of infected dairy products or direct contact with infected dairy cattle. Harshly, the dairy industry is increasingly confronted with AMR Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This study was designed to investigate the multidrug- resistant pattern along with the most frequently isolated resistant genes of S. aureus and E. coli from bovine milk in the south-eastern part of Bangladesh. A total of 175 samples were randomly collected from ten dairy farms. Isolation and identification of S. aureus and E. coli were done following the standard bacteriological method. The spa gene and 16s rRNA gene were tabbed in molecular identification of S. aureus and E. coli, respectively. In this study 26 (14.86%; 95% CI 10% - 21%) isolates were confirmed as S. aureus whereas 20 (11.43%; 95% CI 7.12% - 17.10%) were confirmed as E. coli based on the PCR assay. Among the positive S. aureus isolates, 22 (84.6%; 95% CI 65.1%-95.6%) were characterized with the presence of AMR genes and 17 (85%; 95% CI 62.1%-96.8%) E. coli isolates were characterized with the presence of AMR genes. Afterward, the positive isolates were screened against 15 antimicrobials using the disc diffusion technique. At a fleeting glance, the highest number of S. aureus (80.7%, 95% CI 60.6-93.4) isolates were resistant to streptomycin and all the S. aureus (100%) were sensitive to meropenem. Meanwhile, all the E. coli isolates were resistant to ciprofloxacin whereas 95% (95% CI 75.1% - 99.9%) showed sensitivity to meropenem and 80% (95% CI 56.3%-94.2%) to gentamicin. Among the 26 S. aureus, 5 isolates (19.2%) were positive for the mecA gene. tetK gene was identified among the 19 (73.1%) S. aureus isolates and belonged to the highest proportion. On the other hand, the tetM gene was found within the 2 isolates showing the least percentage. In case of E. coli, the ciprofloxacin-resistant gene gyrA, was identified among the 19 (95%) E. coli isolates and it was the highest proportion. No colistin resistant gene was detected in isolated E. coli. Fifty percent of the E. coli isolates represented sulphamethoxazoletrimethoprim resistant gene sull and sul2. Similarly, 10 (50%) E. coli isolates were positive to ampicillin resistant gene *blaTEM* and 30% were *blaCTX-M*, resistant to ceftriaxone.

From the univariable logistic regression analysis, it was evident that the odds of having AMR S. aureus was 2.41 (95% CI: 0.96-6.07) times higher in the farms where the antibiotic course was not completed properly. Furthermore, the odds of having AMRE.coli in bovine raw milk was almost 23 (95% CI: 6.09-84.25; P=<0.0001) times higher in the dairy farms avoiding the practice of antibiotic course completion, 12 (95% CI: 3.31-44.12) times higher where withdrawal period was not followed, 18.38 (95% CI: 4.98-67.82) times attributed when the farms avoided proper dose maintenance and 7.62 (95% CI: 2.10-27.63; P=0.002) times greater in those dairy farms having the farm personnel without the knowledge of AMR. However, multivariable logistic regression model showed no significant association might be due to low observation number. In case of presence of S. aureus in the sample, after adjustment of the confounding effect of the factors in the multivariable logistic regression model, a potential risk factor (CMT result) was identified in this study. The odds of the presence of S. aureus in the CMT test 'positive' samples was 10.3 times (95% CI: 2.6-40.5) higher than the CMT test 'negative' samples. In the case of E. coli, the multivariable analysis showed that the presence of E. coli increased by 13.7 times if the floor had been contaminated with mud and cow dung during the milking time and exclusively a hike odds found in case of the dirty udder of cows, as well. Conclusively, the study findings will provide ample statistical evidence to develop strategies for improved antimicrobial stewardship, rejuvenate the antimicrobial drug channel and to develop efficacious and sustainable alternative approaches to tackling AMR crisis both in humans and livestock.