

IDENTIFICATION AND QUANTIFICATION OF MICROPLASTICS AT AVAYMITRA GHAT OF KARNAPHULI RIVER, CHATTOGRAM, BANGLADESH

Zannatul Bakeya

Roll No. 0120/14 Registration No. 866 Session: 2020-2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

> Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > AUGUST 2022

AUTHORIZATION

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author

August 2022

IDENTIFICATION AND QUANTIFICATION OF MICROPLASTICS AT AVAYMITRA GHAT OF KARNAPHULI RIVER, CHATTOGRAM, BANGLADESH

Zannatul Bakeya

Roll No. 0120/14 Registration No. 866 Session: 2020-2021

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Shahida Arfine Shimul

Dr. Sk. Ahmad Al Nahid Co-supervisor

Supervisor

Dr. Sk. Ahmad Al Nahid

Chairman of the Examination Committee

Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh AUGUST 2022

ACKNOWLEDGEMENTS

All gratitude is due to the Almighty **Allah Subhanahuwata'ala** for bestowing upon her the strength, ability and perseverance to pursue further education and complete her research work and thesis within due time, of course.

The author would like to express her profound love and sincere thanks to her parents, who brought her into the world and provided her with all she needed to succeed in life.

The author wants to express her heartfelt gratitude and indebtedness to Vice-Chancellor, **Professor Dr. Goutam Buddha Das**, and **Professor Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU, from the bottom of her heart for their immense administrative support to complete her research work.

It is a pleasure to convey her profound gratitude to her MS supervisor, **Shahida Arfine Shimul**, Assistant Professor, Department of Fisheries Resource Management, CVASU, for her close supervision, immense support, and intellectual guidance during the author's whole research wok.

The author also expresses her deepest sense of gratitude and sincere appreciation to her honorable teacher and research co-supervisor, **Dr. Sk. Ahmad Al Nahid**, Associate Professor and Head, Department of Fisheries Resource Management, CVASU, for his kind cooperation, authoritative guidance, insightful recommendations, and continuous motivation.

The author's appreciation and gratitude are extended to UGC (University Grant Commission), Bangladesh and the Ministry of Science and Technology for funding required to accomplish her research work.

The author would like to convey her profound appreciation and warmest thanks to Mohammad Bokhteyar Hasan, Mrs. Supriya Biswas and all other laboratory technicians, Faculty of Fisheries, CVASU, for their sincere cooperation.

It's her fortune to gratefully acknowledge the support of Saifuddin Rana, Maitri Barua, and Jannatun Naeem for their support throughout the research tenure. Last but not least, the author also expresses her heartfelt gratitude and indebtedness to all the people who have supported her to complete the research work directly or indirectly.

The Author

CONTENTS

Title	Page No.
Title Page	i
Authorization	ii
Signature page	iii
Acknowledgements	iv
List of Tables	viii
List of Appendices	viii
List of Figures	ix
List of Plates	Х
List of Abbreviations	xi
Abstract	xii
Chapter One: Introduction	1-4
1.1 Background	1-2
1.2 Significance of the study	2
1.2.1 Significance of microplastics	2-3
1.2.2 Significance of Karnaphuli river	3-4
1.3 Objectives	4
Chapter Two: Review of Literature	5-11
2.1 Microplastics in marine environments	5
2.2 Microplastics in freshwater environments	5-6
2.3 Microplastics in river environments: sources and factors affecting transportation	6-7
2.4 Temporal change of microplastics in river environments	7-8
2.5 Rivers as a microplastics transfer pathway	8-9
2.6 Impacts of microplastics ingestion and associated ecological concern	9-10

2.7 Studies associated with microplastics pollution in Bangladesh	10-11
Chapter three: Materials and Methods	12-17
3.1 Study area	12-13
3.2 Sampling technique	13-14
3.3 Laboratory Analysis	14-17
3.3.1 Wet sieving and drying	14
3.3.2 Wet per oxidation	14-15
3.3.3 Density separation	15-16
3.3.4 Filtration	16
3.3.5 Microplastics type, shape, color, identification	16-17
3.3.6 Microplastics size measurement	17
3.4 Determination of microplastic abundance	17
3.5 Statistical analysis	17
Chapter Four: Results	18-26
4.1 Abundance of Microplastics	18-20
4.1.1 Monthly variations of total microplastics abundance	18
4.1.2 Seasonal variation of total microplastics abundance	18-19
4.1.3 Microplastic abundance variations by type	19
4.1.4 Seasonal variations of microplastic abundance by type	20
4.2 Characteristics of Microplastics	20-26
4.2.1 Types of Microplastics	20-22
4.2.2 Colors of Microplastics	22-23
4.2.3 Shapes of Microplastics	23-25
4.2.4 Sizes of Microplastics	25-26
Chapter Five: Discussion	27-31
5.1 Monthly variations of total microplastics abundance	27-28

vi

5.2 Seasonal variation of total microplastic abundance	
5.3 Types of microplastics	28-29
5.4 Colors of Microplastics	29-30
5.5 Shapes of Microplastics	30
5.6 Sizes of Microplastics	30-31
Chapter Six: Conclusion	32
Chapter Seven: Recommendations	33
References	34-45
Photo Gallery	46-49
Appendices	50-52
Biography	53

Table No.	Title	Page No.
1	GPS coordinates	12
2	Solution preparation	16
3	Abundances of six types (fragment filament, film, foam, pellet and granule). Values are means \pm SE. Values with the different letters within each series indicate significant differences (p < 0.05) among the types.	19

LIST OF TABLES

LIST OF APPENDICES

Sl. No.	Title	Page No.
1	One-way analysis of monthly variations of total microplastics abundance	50
2	Seasonal variation of total microplastics abundance analyzed by independent t-test	50
3	One-way analysis of microplastic abundance variations by type	51
4	Seasonal variations of microplastic abundance by type analyzed by independent t-test	51-52

Figure No.	Title	Page No.
1	Map of Chattogram region and study site	13
2	Monthly variations of total microplastics abundance	18
3	Seasonal variation of total microplastics abundance	19
4	Seasonal variations of microplastic abundance by type	20
5	Type percentage of microplastics	21
6	Type percentage of microplastics (rainy season)	21
7	Type percentage of microplastics (dry season)	22
8	Color percentage of microplastics	22
9	Color percentage of microplastics (rainy season)	23
10	Color percentage of microplastics (dry season)	23
11	Shape percentage of microplastics	24
12	Shape percentage of microplastics (rainy season)	24
13	Shape percentage of microplastics (dry season)	25
14	Size percentage of microplastics	25
15	Size percentage of microplastics (rainy season)	26
16	Size percentage of microplastics (dry season)	26

LIST OF FIGURES

Plate No.	Plate No. Title	
1	Manta net	46
2	Net towing	46
3	Sample collection	46
4	Sieving	46
5	Sample collection	46
6	Drying	46
7	Adding H ₂ O ₂	47
8	Heating	47
9	Adding $ZnCl_2$ solution to the sample	47
10	Pouring the sample into density separator	47
11	Collection of separated sample	47
12	Filtration	47
13	Visual identification	48
14	Visually identified microplastics	48
15	Microscopic identification	48
16	Red elongated filament	48
17	Transparent angular film	48
18	White Irregular foam	48
19	White round pellet	49
20	Brown irregular granule	49
21	Size measurement	49

LIST OF PLATES

Acronym	Definition	
MT	Metric ton	
Km^2	Kilometer square	
Particles/m ³	Particles per meter cube	
Items/g	Items per gram	
m	Meter	
cm	Centimeter	
cm ²	Centimeter square	
μm	Micro meter	
ml	Milliliter	
mm	Millimeter	
М	Molar	
g	Gram	
L	Liter	
g/cm ³	Gram per cm ³	
m^2	Meter square	
df	Degrees of freedom	
F	F-value	
t	t t- value	
Sig.	Significance	
Diff	Difference	
SE	Standard error	
e.g.	Exempli Gratia	
ANOVA	Analysis of Variance	

LIST OF ABBREVIATIONS

ABSTRACT

Bangladesh is one of the countries that could be at risk from microplastic pollution. Only a few studies on microplastics have been conducted in Bangladesh. This is the first study on the identification and characterization of microplastics, the abundance of microplastics, and seasonal variation of microplastics in the surface water of the Karnaphuli river near Avaymitro Ghat, Chattogram. Sampling was conducted on a monthly basis from July 2021 to February 2022 by using a 200 µm mesh size manta net. This study has shown that the abundance of microplastics was highest in the month of July (140370 \pm 19586 particles per km²), when the average rainfall was highest, and lowest in the month of January (54815 \pm 9220 particles per km²), when the average rainfall was lowest. The findings also reveal that the abundance of microplastics was 1.55 times higher during the rainy season (114639 \pm 8845 particles per km²) than it was during the dry season (73796 \pm 6817 particles per km²). Heavy rain and extensive riverine freshwater input in the rainy season transport greater terrestrial plastic trash into the riverine ecosystem, resulting in a higher average microplastics concentration in surface water. Characteristics of the microplastics (types, colors, shapes, size) were also quantified in this study. Six different types of microplastics were identified, of which fragments (39.30%) and filaments (33.40%) were the most dominant. Ten different colors of microplastics were observed, of which red (27.64%) and green (21.63%) colors were the most dominant. Six different shapes of microplastics were examined, with irregular (39.15%) and elongated (37.21%) shapes being the most dominant, and five different size classes of microplastics were found, with the 1mm to <2mm (32.97%) size class being the most dominant. Identification and quantification of microplastics gives an indication of the level of microplastic pollution in the study area, which will be very useful information for the concerned departments and stakeholders in order to start mitigating efforts.

Keywords: Microplastics, Abundance, Seasonal variations, Characteristics, Karnaphuli river