

IDENTIFICATION AND QUANTIFICATION OF MICROPLASTICS AT KALURGHAT OF KARNAPHULI RIVER

Jannatun Naeem Ananna

Roll No. 0120/16 Registration No. 868 Session: 2020-2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

> Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > AUGUST 2022

AUTHORIZATION

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author

August 2022

IDENTIFICATION AND QUANTIFICATION OF MICROPLASTICS AT KALURGHAT OF KARNAPHULI RIVER

Jannatun Naeem Ananna

Roll No.: 0120/16 Registration No.: 868 Session: 2020-2021

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Fatema Akhter Supervisor Shahida Arfine Shimul Co-supervisor

Dr. Sk. Ahmad Al Nahid Chairman of the Examination Committee Department of Fisheries Resource Management Faculty of Fisheries Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh AUGUST 2022

ACKNOWLEDGMENTS

The author is indebted to Almighty **ALLAH** who enabled her with courage, strength, and patience to complete the research work and write up the dissertation successfully within due time of course.

The author expresses her gratitude and indebtedness to **Prof. Dr. Goutam Buddha Das,** Vice-Chancellor, CVASU and **Prof. Dr. Mohammed Nurul Absar Khan**, Dean, Faculty of Fisheries, CVASU for their immense administrative support to complete her research work.

The author expresses her deepest sense of gratitude and sincere appreciation to **Dr. Sk. Ahmad Al Nahid,** Associate Professor and Head, Department of Fisheries Resource Management, Faculty of Fisheries, CVASU for his support, advice, and continuous motivation.

The author also sincerely expresses her gratitude to her supervisor **Fatema Akhter**, Assistant Professor, Department of Fish Biology and Biotechnology, Faculty of Fisheries, CVASU for her valuable supervision and guidance. It was really a great pleasure and amazing experience for her to work under her supervision.

The author expresses her gratitude to her co-supervisor **Shahida Arfine Shimul**, Assistant Professor, Department of Fisheries Resource Management, Faculty of Fisheries, CVASU for her valuable advice, scholastic guidance, suggestions, and inspiration.

The author expresses her thanks to the lab technician **Bokhteyar Hossain**, **Supriya Biswas** and all the staff members of the Aquatic Ecology laboratory for their cooperation during sample collection and examination in the laboratory.

The author sincerely thanks to **Zannatul Bakeya and Saifuddin Rana** for their cooperation during the research work which made her work easier.

The Author

CONTENTS

Title	
The	No.
Title Page	i
Authorization	ii
Signature page	iii
Acknowledgements	iv
List of Tables	viii
List of Appendices	viii
List of Figures	ix
List of Plates	x
List of Abbreviations	xi
Abstract	xii
Chapter One: Introduction	1-4
1.1 Background	1-2
1.2 Problem Statement	2-3
1.3 Significance of the study	3
1.4 Objectives	3-4
1.4.1 Specific objectives	4
Chapter Two: Review of Literature	5-9
2.1 Global microplastics distribution in the marine environment	5-6
2.2 Microplastics pollution in freshwater	6-7
2.3 Sources and pathways of microplastics	7-8
2.4 Extraction of microplastics	8
2.5 Microplastic related works in Bangladesh	8-9
Chapter three: Materials and Methods	10-15

3.1 Study area	10-11
3.2 Sample collection	11-12
3.3 Apparatus and Materials	12
3.4 Solutions	12
3.5 Laboratory Analysis	12-15
3.5.1 Wet sieving and drying	13
3.5.2 Wet per oxidation	13-14
3.5.3 Density separation	14
3.5.4 Filtration	14
3.5.5 Identification	14-15
3.6 Measurement of size	15
3.7 Determination of microplastic abundance	15
3.8 Statistical analysis	15
Chapter Four: Results	16-23
4.1 Abundance of Microplastics	16-18
4.1.1 Monthly variations of total microplastics abundance	16
4.1.2 Seasonal variation of total microplastics abundance	16-17
4.1.3 Microplastic abundance variations by type	17
4.1.4 Seasonal variations of microplastic abundance by type	18
4.2 Characteristics of Microplastics	18-23
4.2.1 Types of Microplastics	18-19
4.2.2 Colors of Microplastics	20-21
4.2.3 Shapes of Microplastics	21-22
4.2.4 Sizes of Microplastics	22-23
Chapter Five: Discussion	24-26
Chapter Six: Conclusion	27

Chapter Seven: Recommendations	28
References	29-37
Photo Gallery	38-40
Appendices	41-42
Biography	43

LIST	OF	TAB	LES

Table No.	Title	Page No.
1	GPS coordinates	10
2	Abundances of different types of microplastics (filament, film, fragment, foam, granule, pellet). Values with different letters indicate significant differences (P<0.05) among different types of microplastics	17

LIST OF APPENDICES

Sl. No.	Title	Page No.
1	One-way analysis of monthly variations of total microplastics abundance	41
2	Seasonal variation of total microplastics abundance analyzed by independent t-test	41
3	One-way analysis of microplastic abundance variations by type	42

LIST OF FIGURES

Figure No.	Title	Page No.	
1	Map of the research area	11	
2	Monthly variation of total microplastic abundance (particles per km ²) in Kalurghat Station	16	
3	Seasonal variation of total microplastic abundance (particles per km ²) in Kalurghat Station	17	
4	Seasonal variations of microplastic abundance by type in two seasons	18	
5	Percentage of microplastics according to type (total percentage)	19	
6	Percentage of 6 types of microplastics in rainy season	19	
7	Percentage of 6 types of microplastics in dry season	19	
8	Overall percentage of different color microplastics 20		
9	Percentage of different color microplastics in rainy season 20		
10	Percentage of different color microplastics in dry season 21		
11	Percentage of different shape microplastics (total percentage)	21	
12	Percentage of different shape microplastics in rainy season	22	
13	Percentage of different shape microplastics in dry season	22	
14	Percentage of different size microplastics (total percentage)	23	
15	Percentage of different size microplastics in rainy season	23	
16	Percentage of different size microplastics in dry season	23	

Plate No.	Title	Page No.
1	Manta net	38
2	Net towing	38
3	Sample collection	38
4	Sieving	38
5	Drying	38
6	Wet per oxidation	38
7	Heating	39
8	Density separation	39
9	Collection of separated samples	39
10	Filtration	39
11	Visually identified microplastics	39
12	Microscopic observation	39
13	Transparent fragment	40
14	Black filament	40
15	Green and transparent film	40
16	Size measurement	40

LIST OF PLATES

_

Acronym	Definition	
km ²	Kilometer square	
Particles/m ³	Particles per meter cube	
Items/g	Items per gram	
М	Meter	
Cm	Centimeter	
cm^2	Centimeter square	
μm	Micrometer	
Ml	Milliliter	
Mm	Millimeter	
М	Molar	
G	Gram	
L	Liter	
g/cm ³	Gram per cm ³	
m^2	Meter square	
Df	Degrees of freedom	
Т	t- value	
Sig.	Significance	
Diff	Difference	
SE	Standard error	
e.g.	Exempli Gratia	
ANOVA	Analysis of Variance	

LIST OF ABBREVIATIONS

Abstract

Microplastics are pervasive and are thought to cause severe threat to the biodiversity of aquatic environments. Being one of the most densely populated nations in the world, Bangladesh is concerned about microplastic pollution both in marine and inland waterbodies. This study aimed to identify and quantify the microplastics along with their type, shape, color, and size analysis in the surface water of Karnaphuli river at Kalurghat, which point is dominated by industrial areas that probably produce microplastics. From July 2021 to February 2022, over 8-month period water samples were collected in a monthly basis from the Karnaphuli river near the Kalurghat bridge area. Samples were collected from 3 different portions of the river by using a 200 μ m mesh size manta net. This study found six different types of microplastics in ten different colors, six different shapes, and five specific size ranges (0.005-5 mm) of microplastics. In this study, the NOAA method was used for the preparation of samples for analysis and observation. This experiment was based on visualization by naked eye and microscopic analysis. Microplastics were detected with the highest abundance during the month of July (47222 \pm 9229 particles per km²), the lowest availability in the month of January (22963 \pm 3685 particles per km²), mostly brown (18%) in color, and most particles ranging in size from 500 μ m to 1 mm (31.58%). The most dominant microplastic in this study was filaments (35.89%), followed by film, fragment, foam, granule, and pellet, and they were mostly elongated (39.64%) in shape. This investigation provides acuteness on anthropogenic activities and basic microplastic pollution in the Kalurghat area of Karnaphuli river that will aid in developing effective conservations and management strategies to address such environmental problems.

Keywords: Microplastics, Karnaphuli river, Seasonal variation, Abundance