

Multi-drug resistant *Escherichia Coli* isolated from patients with urinary tract infection

Name: Chandana Chanda MPH One Health Fellow

Roll No. 0119/22

Registration no: 749

Session: 2019-2020

The thesis submitted is in the partial fulfillment of the requirements for the degree of MPH (One Health)

One Health Institute Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh September, 2021

Authorization

I hereby declare that I am the sole author of this thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis has been provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

(Chandana Chanda)

September 2021

Multi drug resistant *Escherichia Coli* isolated from patients with urinary tract infection

Name: Chandana Chanda

Roll no: 0119/22

Registration no.: 749

Session: 2019-2020

This is to certify that we have examined the above MPH (One Health) thesis and have found that it is complete and satisfactory in all respects, and all revisions required by the thesis examination committee have been made.

Prof. Shahneaz Ali Khan, PhD
Supervisor

Co- Supervisor

Prof. Sharmin Chowdhury, PhD
Chairman of the Examination Committee
One Health Institute, Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

September 2021

Acknowledgements

All praises to almighty God who gave me the opportunity to be enrolled in the **One Health Institute** for achieving Masters in Public Health. I would like to express my veneration to honorable supervisor Prof. Shahneaz Ali Khan for his coherent and articulated instructions. It would not be possible to complete such a laborious task without his scholastic guidelines. It was an exquisite experience for me to work under his supervision. I feel much pleasure to convey my gratitude to honorable co-supervisor Prof. Mohammad Mahmudul Hassan for his valuable suggestions and inspiration. I am grateful to all laboratory personnel at Epic Health Care Ltd for their support and cooperation in relation to data collection during the fieldwork.

I would like to acknowledge the support and encouragement received during MPH programme from other teachers, technical and non-technical staffs of the One Health Institute, CVASU.

I am also grateful to my parents and family members for their support.

Chandana Chanda

Chattogram, Bangladesh

Contents

Authorization i				
Acknowledgements i				
List of Tables and Figures vii				
List of Abbreviations via				
Abstract				
Chapter 1: Introduction				
Chapter 2: Review of the literature				
2.1	History of Urinary tract infections	5		
2.2	Background of Urinary tract infection	6		
2.2.1	Classification of urinary tract infections	7		
2.2.2	Epidemiology	8		
2.2.3	Risk factors of urinary tract infections	9		
2.2.4	Symptoms of urinary tract infections	10		
2.2.5	Urinary Pathogens	10		
2.3	E. coli and urinary tract infections	12		
2.3.1	Structure of E. coli	12		
2.3.2	Pathogenesis of E. coli	13		
2.3.3	Transmission of E. coli	13		
2.3.4	Laboratory diagnosis	14		
2.4	Treatment of UTI	15		
2.4.1	The Aminopenicillins	15		
2.4.2	Piperacillin/ Tazobactam	17		
2.4.3	Cephalosporins	18		
2.4.4	Carbapenems	20		
2.4.5	Aminoglycosides	22		
2.4.6	Quinolones	24		
2.4.7	Tigecycline	25		
2.4.8	Nitrofurantoin	25		
2.4.9	Colistin	26		
2.4.10	Trimethroprim-Sulfamethoxazole	26		
2.5	Prevention and control	27		

2.6	Antimicrobial resistance	28		
2.6.1	Resistance pattern in humans 28			
2.6.2	Resistant pathogen in wildlife	31		
2.6.3	Resistant pathogen in environment	31		
2.6.4	4 Resistant pathogen in food producing animals 3			
2.7	7 Antimicrobial resistance against <i>E. coli</i>			
2.8	Prevention and control of antibiotic resistant strains 3			
Chapter	3: Materials and Methods	36		
3.1	Description of the study area	36		
3.2	Study design	37		
3.3	Study period	37		
3.4	Sample size calculation	38		
3.5	Collection of data	38		
3.6	Laboratory procedures	39		
3.6.1	Sample collection	39		
3.6.2	Isolation and identification of E. coli and susceptibility			
3.7	Data analysis	39 41		
3.7.1	Descriptive analysis	41		
3.7.2	Risk factor analysis	41		
Chapter 4: Result				
4.1	Antimicrobial resistance based on gender	42		
4.2	Univariate analysis of antimicrobial resistance against age			
	group	43		
4.3	Prevalence of antimicrobial resistance among the study			
	population	47		
4.4	Multi drug resistant strains of <i>E. coli</i> in the study			
	population	49		
Chapter	5: Discussion	54		
Chapter	6: Conclusion	57		
Chapter 7: Limitation				
Chapter 8: Recommendations				
References 6				

List of Tables and Figures

Table 2.1	Commonly isolated uropathogens in complicated and uncomplicated UTI	11
Table 4.1	Univariate association between antimicrobials and gender	42
Table 4.2	Univariate association between antimicrobials and Age categories	44
Table 4.3	Pattern of multidrug resistance combinations	50
Figure 2.1	Male and Female Urinary Tracts	07
Figure 2.2	Structure of E. coli	13
Figure 2.3	Transmission of antimicrobial resistant micro- organisms to humans	14
Figure 3.1	Map of Chattogram	36
Figure 3.2	Sample processing	42
Figure 3.3	Vitek 2 GN cassette	43
Figure 4.1	100% Stacked bar graph of antimicrobial resistance pattern	47
Figure 4.2	Pattern of resistant antimicrobials	48
Figure 4.3	Frequency of multidrug resistance among different antibiotics	49

List of Abbreviations

Abbreviation	Elaboration
UTI	Urinary Tract Infection
CA-UTI	Community-Acquired Urinary Tract Infection
N-UTI	Nosocomial Urinary Tract Infections
CAE	Cefuroxime Axetil
ExPEC	Extra intestinal pathogenic E. coli
MDR	Multi- Drug Resistant
TMP-SMX	Trimethroprim-Sulfamethoxazole
AMR	Antimicrobial Resistance
NDM	New-Delhi metallo-β- lactamase
VISA	Vancomycin-intermediate S. aureus
VRE	Vancomycin Resistant Enterococci
CRE	Carbapenem Resistant Enterobacteriaceae
PMQR	Plasmid-Mediated Quinolone Resistant
FPA	Food Producing Animals
CI	Confidence Interval

Abstract

Urinary tract infections (UTI) are among the most common infectious diseases in the world. They are caused by micro-organisms that infect the structures of the urinary tract. Almost 95% of all UTIs are caused by bacteria and majority of them are caused by E. coli. Due to emergence of resistance strains, UTI infections caused by E. Coli are becoming complicated day by day. Since most UTIs are treated empirically without any culture or sensitivity testing, there is clear knowledge gap about the existing patterns of resistance among our population. Hence, the aim of this study is to identify the drug resistance pattern of *E. coli* isolated from patients with urinary tract infections. In this cross-sectional study, secondary data were collected from a laboratory in the city of Chattogram. A total of 400 culture and sensitivity reports of urine were collected over a period of two years. Only the reports that came positive for E. Coli were included in this study. Among all the samples, that were included in this study, 383(95.7%) sample isolates showed resistance to at least three antibiotics. Around 22.5% (n=90) of the samples showed antimicrobial resistance to six drugs combinations. Among different combinations of drugs, around 35 sample isolates were resistant to the drug combination of Ampicillin-Cefuroxime-Ceftriaxone- Cefepime- Nalidixic Acid and Ciprofloxacin. It was the most frequent pattern. This study could not find any association between antibiotic resistance pattern and age. In case of gender, male population were significantly more resistant against antibiotics like Meropenem, Imipenem, Amikacin, Gentamycin and Nitrofurantoin as compared to the females. Escherichia Coli is the most frequent uropathogen to date. However, the choice of treatment is gradually becoming narrow due to the widespread resistance of previously used antibiotics. In such circumstances, strict policies should be implemented for prescribing and selling antibiotics. Additionally, regular surveillance is necessary to monitor the organisms that cause UTI along with their resistance patterns. Since the sensitivity patterns of E. coli differ based on geographical locations, susceptibility of the organism and its drug resistance pattern in different region must be studied for an effective treatment against the contagion.