

IDENTIFICATION OF PLANKTON COMMUNITY AND THEIR INTER-RELATIONSHIP WITH PRIMARY PRODUCTIVITY OF KAPTAI LAKE

Farzana Yasmin Nupur

Roll No.: 0120/01

Registration No.: 853

Session: 2020 - 2021

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Fisheries Resource Management

Department of Fisheries Resource Management
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

JUNE 2022

AUTHORIZATION

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the **electronic copy** of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author

June, 2022

IDENTIFICATION OF PLANKTON COMMUNITY AND THEIR INTER-RELATIONSHIP WITH PRIMARY PRODUCTIVITY OF KAPTAI LAKE

Farzana Yasmin Nupur

Roll No.: 0120/01

Registration No.: 853

Session: 2020 - 2021

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

Dr. Sk. Ahmad Al Nahid Mrs. Shahida Arfine Shimul
Supervisor Co-supervisor

Dr. Sk. Ahmad Al Nahid Chairman of the Examination Committee

Department of Fisheries Resource Management
Faculty of Fisheries
Chattogram Veterinary and Animal Sciences University
Chattogram-4225, Bangladesh

June, 2022

ACKNOWLEDGEMENTS

All praises are due to Almighty Allah for blessing me with the strength, aptitude and patience and enabled me to pursue higher education and to complete the thesis for the degree of Masters of Science (MS) in Fisheries Resource Management under Department of Fisheries Resource Management, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.

The author expresses her gratitude and indebtedness to Vice-Chancellor, Professor Dr. Goutam Buddha Das and Dean, Professor Dr. Muhammad Nurul Absar Khan from the bottom of her heart for their immense administrative support to complete her research work.

The author would like to express her deepest sense of graditude, sincere appreciation, profound regards and indebtedness to her respected teacher and research supervisor **Dr. Sk. Ahmad Al Nahid,** Head and Associate Professor, Department of Fisheries Resource Management, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for his unflinching co-operation, constant inspiration, affectionate feelings, warmth and indomitable guidance throughout the period of research work and preparation of the manuscript.

The author finds it a great pleasure in expressing her heartfelt gratitude and immense indebtedness to her research co-supervisor **Mrs. Shahida Arfine Shimul,** Assistant Professor, Department of Fisheries Resource Management, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for her sympathy, sincere cooperation, inspiration and valuable suggestions for the completion of the research work.

The author is extremely glad to take the opportunity to express her heartfelt thanks and gratitude to her all other respected teachers of the Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for their valuable teaching and continuous encouragement during the study period in fisheries.

The author expresses her sincere thanks to **Saifuddin Rana** for his co-operation in data analysis and interpretation.

The author expresses her great appreciation to the staff of CVASU research vessel for their immense support and cooperation by helping her in sampling for the research work.

The author expresses her thanks to Mr. Mohammad Bokhteyar Hasan, Mrs. Supria Biswas, Mr. Iden Dutta, Mr. Abdullah Al Arif and all other laboratory technicians and office staffs, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, for their sincere co-operation towards the completion of the research work.

Last, but not the least, the author expresses her heartfelt gratitude to her beloved parents Mr. Md. Shah Jahan Saju and Mrs. Golzer Begum for their selfless love, blessings, care, dedicated efforts, valuable prayers and continuous support during the academic life.

The Author

CONTENTS

Chapter	Title	Page No.
	Authorization	ii
	Acknowledgements	iv - v
	List of abbreviations	vi
	List of tables	vii
	List of plates	Viii
	List of figures	ix
	List of appendices	ix
	Abstract	X
1	Introduction	1 - 3
2	Review of Literature	4 - 6
3	Materials and Methods	7 - 10
	3.1 Sampling site	7
	3.2 Study period	8
	3.3 Sample collection	8
	3.4 Identification of plankton species	8
	3.5 Determination of plankton abundance	8
	3.6 Determination of primary productivity	9
	3.7 Data analysis and interpretation	10
4	Results	12 - 29
	4.1 Phytoplankton	12
	4.1.1 Phytoplankton identification	12 - 14
	4.1.2 Phytoplankton abundance	15 – 16
	4.1.3 Phytoplankton community composition	17
	4.1.4 Temporal and spatial variation of phytoplankton	18
	abundance	
	4.2 Zooplankton	19
	4.2.1 Zooplankton identification	19
	4.2.2 Zooplankton abundance	20 - 21
	4.2.3 Zooplankton community composition	22
	4.2.4 Temporal and spatial variation of zooplankton	23
	abuundance	

	4.3 Primary productivity	24
	4.4 Inter-relationship among parameters	25
5	Discussion	26 - 28
	5.1 Phytoplankton	26
	5.2 Zooplankton	27
	5.3 Primary productivity	27 - 28
	5.4 Inter-relationship among parameters	28
6	Conclusion	29
7	Recommendation and future perspectives	30
	References	31 – 33
	Appendices	34 - 40
	Brief biography	41

List of abbreviations

Short form	Abbreviation
ANOVA	One-way Analysis of Variance
С	Carbon
CVASU	Chattogram Veterinary and Animal Sciences University
g	Gram
GPP	Gross primary productivity
h	Hour
L	Litre
mg	Milligram
NPP	Net primary productivity
SD	Standard Deviation

List of tables

Table No.	Title	Page No.
1	Mean value and range of phytoplankton abundance	16
2	Mean value and range of zooplankton abundance	21

List of Plates

Plate No.	Title	Page No.
1	CVASU Research Vessel	11
2	Sample collection	11
3	Measurement of dissolved oxygen	11
4	Plankton identification	11
5	Plankton cell count	11
6	Actinastrum	12
7	Cosmarium	12
8	Chlamydomonus	12
9	Mougeotia	13
10	Pandorina	13
11	Pediastrum	13
12	Spirogyra	13
13	Staurastrum gracile	13
14	Staurastrum johnsonii	13
15	Staurastrum leptocladum	13
16	Staurastrum manfeldti	13
17	Staurastrum pingue	13
18	Staurastrum rotula	13
19	Xanthidium	13
20	Zygnema	13
21	Anabaena	14
22	Aphanothece	14
23	Gleocapsa	14
24	Ceratium	14
25	Phacus	14
26	Brachionus	19
27	Euchlanis	19
28	Keratella	19
29	Polyarthra	19
30	Asplanchna	19
31	Nauplius	19
32	Cyclops	19
33	Paramecium	19

List of Figures

Figure No.	Title	
1	Map of the sampling site	7
2	Total phytoplankton abundance in four sampling stations	
3	Mean values (±SD) of phytoplankton abundance in four sampling stations	15
4	Percentage of different classes of phytoplankton	17
5	Percentage of different genera of phytoplankton	17
6	Temporal and spatial variation of total phytoplankton abundance (Mean \pm SD)	18
7	Total zooplankton abundance in four sampling stations	19
8	Mean values (±SD) of zooplankton abundance in four stations	20
9	Percentage of different groups of zooplankton	19
10	Percentage of different genera of zooplankton	22
11	Temporal and spatial variation of total zooplankton abundance (Mean \pm SD)	
12	Gross primary productivity of four sampling stations	24
13	Net primary productivity of four sampling stations	24
14	Correlation matrix plot among parameters	25

List of Appendices

Appendix	Title	Page
No.		No.
1	Phytoplankton abundance data in Jolojan Ghaat station	
2	Phytoplankton abundance data in Kandemu station	
3	Phytoplankton abundance data in Shubholong Jhorna station	36
4	Phytoplankton abundance data in Shubholong Bazar station	37
5	Zooplankton abundance data in Jolojan Ghaat station	38
6	Zooplankton abundance data in Kandemu station	38
7	Zooplankton abundance data in Shubholong Jhorna station	39
8	Zooplankton abundance data in Shubholong Bazar station	39
9	Gross primary productivity data	40
10	Net primary productivity data	40

Abstract

The present study was carried out in Kaptai Lake from September, 2021 to February, 2022; for a period of six months to identify the plankton community and establish a relationship between plankton abundance and primary productivity of Kaptai Lake. A total of 15 genera of phytoplankton were identified under the classes Chlorophyceae, Cyanophyceae, Dinophyceae and Euglenophyceae from Kaptai Lake; among which Chlorophyceae was the dominant class. Identified phytoplankton genera were Actinastrum, Cosmarium, Chlamydomonus, Mougeotia, Pandorin, Pediastrum, Spirogyra, Staurastrum, Xanthidium, Zygnema, Anabaena, Aphanothece, Gleocapsa, Ceratium and Phacus. The highest total phytoplankton abundance in Kaptai Lake was recorded to be 32.22×10^3 cells/L in October whereas the lowest value was observed to be 11.21×10^3 cells/L in January. A total of 8 genera of zooplankton were identified under the groups Rotifera, Crustacea, Arthropoda and Protozoa; among which, Rotifera was the dominant group. Identified zooplankton genera were Brachionus, Euchlanis, Keratella, Polyarthra, Asplanchna, Nauplius, Cyclops and Paramecium. The highest total zooplankton abundance in Kaptai Lake was recorded to be 5.06×10³ cells/L in October whereas the lowest value was observed to be 1.92×10³ cells/L in January. Mean gross primary productivity of Kaptai Lake throughout the period of study was (359.16 \pm 104.51) mgC/m³/day and net primary produtivity was (209.81 \pm 60.87) mgC/m³/day. Phytoplankton abundance showed a statistically significant, strong positive correlation with zooplankton abundance; as well as a moderate positive correlation with gross primary productivity (p < 0.05).

Key words: Kaptai Lake, plankton community, primary productivity, correlation